Climate Change

Biological and Human Aspects Second Edition

JONATHAN COWIE

Figures	page xiii
Acknowledgements for the first edition	xix
Acknowledgements for the second edition	XXI
Introduction	1
1. An introduction to climate change	4
1.1 Weather or climate	5
1.2 The greenhouse effect	5
1.3 The carbon cycle	14
1.4 Natural changes in the carbon cycle	23
1.5 Pacemaker of the glacial-interglacial cycles	24
1.6 Non-greenhouse influences on climate	31
1.7 The water cycle, climate change and biology	33
1.8 From theory to reality	35
1.9 References	37
2. Principal indicators of past climates	40
2.1 Terrestrial biotic climatic proxies	42
2.1.1 Tree-ring analysis (dendrochronology)	42
2.1.2 Isotopic dendrochronology	45
2.1.3 Leaf shape (morphology)	47
2.1.4 Leaf physiology	48
2.1.5 Pollen and spore analysis	49
2.1.6 Species as climate proxies	52
2.2 Marine biotic climatic proxies	54
2.2.1 ¹⁸ O Isotope analysis of forams and corals	54
2.2.2 Alkenone analysis	58
2.3 Non-biotic indicators	59
2.3.1 Isotopic analysis of water	59
2.3.2 Boreholes	61
2.3.3 Carbon dioxide and methane records as palaeoclimatic force	ing
agents	61
2.3.4 Dust as an indicator of dry-wet hemispheric climates	62
2.4 Other indicators	62
2.5 Interpreting indicators	63
2.6 Conclusions	63
2.7 References	64

3. Past climate	e change	66
	biology and climate of the Hadean and Archeaen eons	
		66
•	The pre-biotic Earth (4.6–3.8 bya)	66
3.1.2		67
3.2 Major	bio-climatic events of the Proterozoic eon (2.5–0.542 bya)	71
3.2.1	· · · · ·	71
3.2.2		74
3.3 Major	bio-climatic events of the pre-Quaternary Phanerozoic	
(542–2 mya)		
	Late-Ordovician extinction (455–435 mya)	80
3.3.2	· · ·	81
3.3.3	· • •	
	dioxide (350–275 mya)	81
3.3.4		84
3.3.5		85
	End-Triassic extinction (205 mya)	87
3.3.7	· • •	88
3.3.8		89
3.3.9		
	Maximum (~55 mya)	92
3.3.10	Eocene–Oligocene extinction (approximately 35 mya; or	
	33.9 mya?)	106
3.3.11	Late-Miocene expansion of C_4 grasses (14–9 mya)	107
3.4 Summ		112
3.5 Refere	-	113
4. The Oligoce	ne to the Quaternary: climate and biology	119
-	ligocene (33.9–23.03 mya)	119
	nd Miocene (9–5.3 mya)	121
	liocene (5.3–2.6 mya)	122
	irrent ice age	126
4.5 The la	-	132
	Overview of temperature, carbon dioxide and timing	132
	Ice and sea level	135
4.5.3	Temperature changes within the glacial	135
4.5.4	Biological and environmental impacts of the last glacial	147
	acials and the present climate	156
4.6.1	Previous interglacials	156
4.6.2	The Allerød, Bølling and Younger Dryas (14 600–11 600	100
	years ago)	160
4.6.3	The Holocene (11 700 years ago-the Industrial Revolution)	166
4.6.4	Biological response to the last glacial, LGM and Holocene	100
	transition	178
4.7 Summ		189
4.8 Refere	•	190

5.	Pres	ent climate and biological change	198
	5.1	Recent climate change	198
		5.1.1 The latter half of the Little Ice Age	198
		5.1.2 20th-century climate	202
		5.1.3 21st-century climate	203
		5.1.4 The Holocene interglacial beyond the 21st century	203
		5.1.5 Holocene summary	207
	5.2	Human change arising from the Holocene climate	208
		5.2.1 Climatic impacts on early human civilisations	208
		5.2.2 The Little Ice Age's human impact	216
		5.2.3 Increasing 20th-century human climatic insulation	224
	5.3	Climate and business as usual in the 21st century	225
		5.3.1 The IPCC Business-as-Usual scenario	225
		5.3.2 Uncertainties and the IPCC's conclusions	240
	5.4	Current human influences on the carbon cycle	249
		5.4.1 Carbon dioxide	250
		5.4.2 Methane	253
		5.4.3 Halocarbons	256
		5.4.4 Nitrous oxide	256
	5.5	References	257
6.	Curi	rent warming and likely future impacts	262
		Current biological symptoms of warming	262
	0.1	6.1.1 Current boreal dendrochronological response	262
		6.1.2 Current tropical rainforest response	264
		6.1.3 Some biological dimensions of the climatic change fingerprint	266
		6.1.4 Phenology	273
		6.1.5 Biological communities and species shift	278
	6.2	Case study: climate and natural systems in the USA and Canada	297
		Case study: climate and natural systems in the UK	312
		Case study: climate and natural systems in Australasia	324
		Biological responses to greenhouse trends beyond the 21st century	328
		Possible surprise responses to greenhouse trends in the 21st century	
		and beyond	329
		6.6.1 Extreme weather events	330
		6.6.2 Greenhouse gases	333
		6.6.3 Sea-level rise	334
		6.6.4 Methane hydrates (methane clathrates)	342
		6.6.5 Volcanoes	346
		6.6.6 Oceanic and atmospheric circulation	349
		6.6.7 Ocean acidity	353
		6.6.8 Climate thresholds	355
		6.6.9 The probability of surprises	358
	6.7	References	359

7.	The	human	ecology of climate change	367
	7.1	Popula	ation (past, present and future) and its environmental impact	367
		7.1.1	Population and environmental impact	367
		7.1.2	Past and present population	375
		7.1.3	Future population	378
		7.1.4	Food	380
		7.1.5	Impact on other species	382
	7.2	Energ	y supply	385
		7.2.1	Energy supply: the historical context	385
		7.2.2	Future energy supply	391
	7.3	Huma	n health and climate change	395
		7.3.1	Health and weather extremes	398
			Climate change and disease	404
		7.3.3	Flooding and health	412
			Droughts	421
	7.4	Clima	te change and food security	422
		7.4.1	Past food security	422
			Present and future food security and climate change	425
	7.5		ology of reducing anthropogenic climate change	432
			Terrestrial photosynthesis and soil carbon	433
		7.5.2	Manipulating marine photosynthesis	438
		7.5.3	Biofuels	439
			ary and conclusions	442
	7.7	Refere	nces	443
8.	Sus	tainabili	ty and policy	449
	8.1	Key de	evelopments of sustainability policy	450
			UN Conference on the Human Environment (1972)	450
		8.1.2	The Club of Rome's Limits to Growth (1972)	452
		8.1.3	World Climate Conference (1979)	453
		8.1.4	The World Conservation Strategy (1980)	453
		8.1.5	The Brandt Report: Common Crisis North-South (1980)	454
		8.1.6	The Brundtland, World Commission on Environment and	
			Development Report (1987)	455
		8.1.7	United Nations' Conference on the Environment and	
			Development: Rio de Janeiro (1992)	456
		8.1.8	The Kyoto Protocol (1997)	457
		8.1.9	Johannesburg Summit: UNCED+10 (2002)	459
		8.1.10	2002–2007	460
			The run-up to Kyoto II (2008–2011)	461
	8.2		energy sustainability and carbon	463
		8.2.1	Prospects for savings from changes in land use	465
		8.2.2	Prospects for savings from improvements in energy efficiency	466
		8.2.3	Prospects for fossil carbon savings from renewable energy	470
		8.2.4	Prospects for carbon-capture technology	472

8.2.5 Prospects for nuclear options	476
8.2.6 Overall prospects for fossil carbon savings to 2025	480
8.3 Energy policy and carbon	481
8.3.1 Case study: USA	482
8.3.2 Case study: Canada	486
8.3.3 Case study: UK	489
8.3.4 Case study: China and India	498
8.3.5 Case study: Australia and New Zealand	504
8.4 Possible future energy options	508
8.4.1 Managing fossil carbon emissions: the scale of the problem	508
8.4.2 Fossil futures	510
8.4.3 Nuclear futures	511
8.4.4 Renewable futures	512
8.4.5 Low-energy futures	513
8.4.6 Possible future energy options and greenhouse gases	514
8.5 Future human and biological change	515
8.5.1 The ease and difficulty of adapting to future impacts	518
8.5.2 Future climate change and human health	524
8.5.3 Future climate and human-ecology implications for wildlife	525
8.5.4 Reducing future anthropogenic greenhouse gas emissions	526
8.5.5 A final conclusion	528
8.6 References	528
Appendix 1 Glossary and abbreviations	535
Glossary	535
Abbreviations	539
Appendix 2 Biogeological chronology	543
Appendix 3 Calculations of energy demand/supply and orders of magnitude	546
Calculations of energy demand/supply	546
Orders of magnitude	547
Sources	547
Appendix 4 Further considerations: climate science and policy beyond 2013	548
Index	551