# **MARINE MICROBIOLOGY** ECOLOGY AND APPLICATIONS

## Second Edition

# **Colin Munn**

### With Foreword by Farooq Azam



# Contents

# Chapter 1 Microbes in the Marine Environment

| Marine microbiology is one of the most exciting<br>and important areas of modern science | 2          |
|------------------------------------------------------------------------------------------|------------|
| Marine microhiology encompasses all microscopic                                          | , <i>2</i> |
| organisms and viruses                                                                    | 2          |
| Marine microbes are found in all three domains<br>of cellular life                       | 3          |
| Horizontal gene transfer confounds our<br>understanding of evolution                     | 4          |
| Viruses are noncellular entities with great importan                                     | nce        |
| in marine ecosystems                                                                     | 4          |
| Microbial processes shape the living world                                               | 5          |
| Marine microbes show great variation in size                                             | 5          |
| The world's oceans and seas form an                                                      |            |
| interconnected water system                                                              | 7          |
| The upper surface of the ocean is in constant motion owing to winds                      | 9          |
| Deep-water circulation systems transport water<br>between the ocean basins               | 10         |
| Seawater is a complex mixture of inorganic and organic compounds                         | 10         |
| Light and temperature have important effects<br>on microbial processes                   | 11         |
| Marine microbes form a major component of the plankton                                   | 13         |
| Microbes, particles, and dissolved nutrients are not evenly distributed in seawater      | 14         |
| Microbes play a key role in the formation of sediments                                   | 16         |
| Microbes colonize surfaces through formation of biofilms                                 | 17         |
| Microbes in sea ice form an important part of the food chain in polar regions            | 19         |
| Microbial activity at hydrothermal vents provides an oasis of life in the deep sea       | 19         |
| Cold seeps also support diverse life                                                     | 20         |
| Living organisms are the habitats of many microbes                                       | 21         |
| Conclusions                                                                              | 22         |
| References                                                                               | 22         |
| Further reading                                                                          | 23         |
|                                                                                          | 20         |

#### Chapter 2 Methods in Marine Microbiology

25

| SAMPLING, GENERAL EXPERIMENTAL<br>PROCEDURES, AND REMOTE SENSING                                            | 26 |
|-------------------------------------------------------------------------------------------------------------|----|
| The aim of microbial ecology is the study of the diversity and activities of microbes <i>in situ</i>        | 26 |
| Measurement of specific cell constituents may<br>be used as biomarkers of microbial activity                | 26 |
| Remote sensing and sampling permits analysis of microbial activities                                        | 27 |
| Microbiological sampling requires special techniques                                                        | 27 |
| Mecocosm experiments attempt to simulate<br>natural conditions                                              | 29 |
| Microelectrodes and biosensors are used to<br>measure environmental changes                                 | 30 |
| Isotopes are used to study microbial<br>transformations of compounds                                        | 30 |
| DIRECT OBSERVATION AND ENUMERATION<br>OF MICROBES                                                           | 31 |
| Light and electron microscopy are used to<br>study morphology and structure of microbes                     | 31 |
| Epifluorescence light microscopy enables<br>enumeration of marine microbes                                  | 32 |
| Confocal laser scanning microscopy enables<br>recognition of living microbes within their<br>habitat        | 33 |
| Flow cytometry measures the number and size of particles                                                    | 33 |
| CULTURE-BASED METHODS FOR ISOLATION<br>AND IDENTIFICATION OF MICROBES                                       | 35 |
| Different microbes require specific culture media and conditions for growth                                 | 35 |
| Enrichment culture selects for microbes with specific growth requirements                                   | 36 |
| Phenotypic testing is used for identification<br>and detailed characterization of many<br>cultured bacteria | 38 |
| Analysis of microbial components can be<br>used for bacterial classification and<br>identification          | 38 |
| raominoution                                                                                                | 00 |

| NUCLEIC-ACID-BASED METHODS                                                                                                                                                           | 40      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| The use of nucleic-acid based methods has had<br>a major impact on the study of marine<br>microbial diversity                                                                        | 40      |
| Sequencing of ribosomal RNA genes is the most<br>widely used tool in studies of microbial                                                                                            |         |
| diversity                                                                                                                                                                            | 40      |
| The first step in all nucleic acid investigations<br>involves the isolation of genomic DNA or RNA<br>from the culture or community                                                   | 42      |
| The polymerase chain reaction (PCR)                                                                                                                                                  | 42      |
| Genomic fingerprinting is used for detailed<br>analysis of cultured microbes                                                                                                         | 44      |
| Determination of GC ratios and DNA–DNA<br>hybridization is used in bacterial taxonomy                                                                                                | 46      |
| DNA sequencing is a major tool in marine microbiology                                                                                                                                | 46      |
| "Next-generation" technologies allow inexpensive<br>high-throughput sequencing                                                                                                       | e<br>46 |
| Sequence data are used for phylogenetic analysis                                                                                                                                     | 47      |
| Denaturing gradient gel electrophoresis (DGGE)<br>and terminal restriction fragment length<br>polymorphism (TRFLP) are widely used to<br>assess composition of microbial communities | 48      |
| Elucidating the full genome sequence of                                                                                                                                              | 10      |
| microbes has provided major insights into<br>their functional roles                                                                                                                  | 49      |
| Metagenomics is revolutionizing our understanding of marine microbial ecology                                                                                                        | 51      |
| Fluorescent hybridization (FISH) allows<br>visualization and quantification of specific<br>microbes                                                                                  | 53      |
| Metatranscriptomics and metaproteomics<br>reveal metabolic activities in the environment                                                                                             | 54      |
| Microarrays enable assessment of gene activity in the environment                                                                                                                    | 55      |
| Conclusions                                                                                                                                                                          | 55      |
| References                                                                                                                                                                           | 55      |
| Further reading                                                                                                                                                                      | 56      |
| Chapter 3 Metabolic Diversity                                                                                                                                                        |         |
| and Ecophysiology                                                                                                                                                                    | 59      |
| All cells need to obtain energy and conserve it in the compound ATP                                                                                                                  | 60      |
| All cells need carbon as the major component of cellular material                                                                                                                    | 60      |
| Phototrophy involves conversion of light energy to chemical energy                                                                                                                   | 60      |
| Oxygenic photosynthesis involves two distinct but coupled photosystems                                                                                                               | 61      |

| Anaerobic anoxygenic photosynthesis uses<br>only one type of reaction center                                         | 62 |
|----------------------------------------------------------------------------------------------------------------------|----|
| Aerobic anoxygenic phototrophy is widespread<br>in planktonic bacteria                                               | 62 |
| Some phototrophs use rhodopsins as light-harvesting pigments                                                         | 63 |
| Chemolithotrophs use inorganic electron donors as a source of energy and reducing power                              | 63 |
| Thiotrophic bacteria use sulfur compounds as electron donor                                                          | 63 |
| Many chemolithotrophs use hydrogen as an electron donor                                                              | 65 |
| Nitrification by <i>Bacteria</i> and <i>Archaea</i> is a major process in the marine nitrogen cycle                  | 65 |
| The Calvin–Benson cycle is the main method of carbon dioxide fixation in autotrophs                                  | 66 |
| Some Archaea and Bacteria use alternative pathways to fix $CO_2$                                                     | 66 |
| Fixation of nitrogen makes this essential element available for building cellular material in all life               | 67 |
| Many marine microbes obtain energy by the fermentation of organic compounds                                          | 68 |
| Aerobic and anaerobic respiration use external electron acceptors                                                    | 68 |
| Reduction of nitrate and denitrification result in release of nitrogen and other gases                               | 69 |
| Sulfate reduction is a major process in marine sediments                                                             | 69 |
| Methanogenesis is a special type of metabolism carried out only by a group of <i>Archaea</i>                         | 70 |
| Aerobic catabolism of methane and other C <sub>1</sub><br>compounds is widespread in coastal and<br>oceanic habitats | 70 |
| Use of complex macromolecules requires the synthesis of extracellular enzymes                                        | 71 |
| Acquisition of iron is a major challenge for marine microbes                                                         | 71 |
| The growth of bacterial cells depends on availability of nutrients and environmental                                 |    |
| factors<br>Bacteria adapt to starvation by a sories of                                                               | 72 |
| coordinated changes to cell metabolism                                                                               | 72 |
| Most marine microbes are adapted to an oligotrophic lifestyle and grow very slowly                                   | 73 |
| Some bacteria enter a "viable but nonculturable" state in the environment                                            | 73 |
| Nutrients are acquired via specialized transport mechanisms                                                          | 74 |
| Growth efficiency of many marine bacteria is probably low                                                            | 75 |

| Some bacteria use motility in the quest for<br>nutrients and optimal conditions76Formation of biofilms is an important step in<br>microbial colonization of surfaces79Pili are important for bacterial attachment to<br>surfaces and exchange of genetic information80Antagonistic interactions between microbes<br>occur on particles or surfaces80Quorum sensing is an intercellular<br>communication system for regulation of<br>gene expression81Most marine microbes grow at low<br>temperatures82Microbes growing in hydrothermal systems are<br>adapted to very high temperatures84Microbes that inhabit the deep ocean must<br>withstand a very high hydrostatic pressure85Microbes vary in their requirements for oxygen<br>or tolerance of its presence86Ultraviolet irradiation has lethal and mutagenic<br>effects87Microbes are protected from osmotic damage<br>by various mechanisms87Conclusions88 | Microbes use a variety of mechanisms to regulate cellular activities                            | 75 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----|
| Formation of biofilms is an important step in<br>microbial colonization of surfaces79Pili are important for bacterial attachment to<br>surfaces and exchange of genetic information80Antagonistic interactions between microbes<br>occur on particles or surfaces80Quorum sensing is an intercellular<br>communication system for regulation of<br>gene expression81Most marine microbes grow at low<br>temperatures82Microbes growing in hydrothermal systems are<br>adapted to very high temperatures84Microbes that inhabit the deep ocean must<br>withstand a very high hydrostatic pressure85Microbes vary in their requirements for oxygen<br>or tolerance of its presence86Ultraviolet irradiation has lethal and mutagenic<br>effects87Microbes are protected from osmotic damage<br>by various mechanisms87Conclusions88                                                                                  | Some bacteria use motility in the quest for nutrients and optimal conditions                    | 76 |
| Pili are important for bacterial attachment to<br>surfaces and exchange of genetic information80Antagonistic interactions between microbes<br>occur on particles or surfaces80Quorum sensing is an intercellular<br>communication system for regulation of<br>gene expression81Most marine microbes grow at low<br>temperatures82Microbes growing in hydrothermal systems are<br>adapted to very high temperatures84Microbes that inhabit the deep ocean must<br>withstand a very high hydrostatic pressure85Microbes vary in their requirements for oxygen<br>or tolerance of its presence86Ultraviolet irradiation has lethal and mutagenic<br>effects87Microbes are protected from osmotic damage<br>by various mechanisms87Conclusions88                                                                                                                                                                       | Formation of biofilms is an important step in<br>microbial colonization of surfaces             | 79 |
| Antagonistic interactions between microbes<br>occur on particles or surfaces80Quorum sensing is an intercellular<br>communication system for regulation of<br>gene expression81Most marine microbes grow at low<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pili are important for bacterial attachment to<br>surfaces and exchange of genetic information  | 80 |
| Quorum sensing is an intercellular<br>communication system for regulation of<br>gene expression81Most marine microbes grow at low<br>temperatures82Microbes growing in hydrothermal systems are<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Antagonistic interactions between microbes<br>occur on particles or surfaces                    | 80 |
| Most marine microbes grow at low<br>temperatures82Microbes growing in hydrothermal systems are<br>adapted to very high temperatures84Microbes that inhabit the deep ocean must<br>withstand a very high hydrostatic pressure85Microbes vary in their requirements for oxygen<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Quorum sensing is an intercellular<br>communication system for regulation of<br>gene expression | 81 |
| Microbes growing in hydrothermal systems are<br>adapted to very high temperatures84Microbes that inhabit the deep ocean must<br>withstand a very high hydrostatic pressure85Microbes vary in their requirements for oxygen<br>or tolerance of its presence86Ultraviolet irradiation has lethal and mutagenic<br>effects87Microbes are protected from osmotic damage<br>by various mechanisms87Conclusions88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Most marine microbes grow at low temperatures                                                   | 82 |
| Microbes that inhabit the deep ocean must<br>withstand a very high hydrostatic pressure85Microbes vary in their requirements for oxygen<br>or tolerance of its presence86Ultraviolet irradiation has lethal and mutagenic<br>effects87Microbes are protected from osmotic damage<br>by various mechanisms87Conclusions88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Microbes growing in hydrothermal systems are<br>adapted to very high temperatures               | 84 |
| Microbes vary in their requirements for oxygen<br>or tolerance of its presence86Ultraviolet irradiation has lethal and mutagenic<br>effects87Microbes are protected from osmotic damage<br>by various mechanisms87Conclusions88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Microbes that inhabit the deep ocean must withstand a very high hydrostatic pressure            | 85 |
| Ultraviolet irradiation has lethal and mutagenic<br>effects87Microbes are protected from osmotic damage<br>by various mechanisms87Conclusions88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Microbes vary in their requirements for oxygen<br>or tolerance of its presence                  | 86 |
| Microbes are protected from osmotic damage<br>by various mechanisms87Conclusions88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ultraviolet irradiation has lethal and mutagenic effects                                        | 87 |
| Conclusions 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Microbes are protected from osmotic damage by various mechanisms                                | 87 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conclusions                                                                                     | 88 |
| References 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | References                                                                                      | 88 |
| Further reading 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Further reading                                                                                 | 89 |

#### Chapter 4 Marine Bacteria

| OVERVIEW OF DIVERSITY OF THE BACTERIA                                                           | 92 |
|-------------------------------------------------------------------------------------------------|----|
| The domain <i>Bacteria</i> contains about 80 phyla,<br>many of which have no cultivated members | 92 |
| There is no generally accepted concept for the definition of bacterial species                  | 93 |
| Bacteria show a variety of cell forms and                                                       |    |
| structure                                                                                       | 93 |
| The cell wall is an important feature of bacterial                                              |    |
| cells                                                                                           | 94 |
| Many <i>Bacteria</i> produce a glycocalyx or capsule                                            | 96 |
| Phylogenetic studies of planktonic Bacteria                                                     |    |
| reveal a small number of major clades                                                           | 96 |
| MAJOR TYPES OF MARINE BACTERIA,                                                                 |    |
| GROUPED BY PHENOTYPE                                                                            | 98 |
| Several groups of bacteria carry out anoxygenic                                                 |    |
| photosynthesis                                                                                  | 98 |
| Nitrifying bacteria grow chemolithotrophically                                                  |    |
| using reduced inorganic nitrogen compounds                                                      |    |
| as electron donors                                                                              | 99 |

| A wide range of <i>Proteobacteria</i> can grow<br>chemolithotrophically using reduced sulfur<br>compounds                       | 101          |
|---------------------------------------------------------------------------------------------------------------------------------|--------------|
| Aerobic methanotrophs and methylotrophs<br>are widespread in coastal and oceanic<br>habitats                                    | 102          |
| The pseudomonads are a heterogeneous group<br>of chemoorganotrophic, aerobic, rod-shaped<br><i>Proteobacteria</i>               | 103          |
| Free-living aerobic nitrogen-fixing bacteria are important in sediments                                                         | 103          |
| The Enterobacteriaceae is a large and well-<br>defined family of Gammaproteobacteria                                            | 1 <b>0</b> 3 |
| <i>Vibrio</i> and related genera have worldwide<br>distribution in coastal and ocean water and<br>sediments                     | 104          |
| Some members of the <i>Vibrionaceae</i> are bioluminescent                                                                      | 104          |
| The Oceanospiralles are characterized by their<br>ability to break down complex organic<br>compounds                            | 106          |
| Magnetotactic bacteria orient themselves in the Earth's magnetic field                                                          | 107          |
| Bdellovibrio is a predator of other bacteria                                                                                    | 108          |
| Budding and stalked <i>Proteobacteria</i> show<br>asymmetric cell division                                                      | 108          |
| Sulfur- and sulfate-reducing bacteria have a major role in the sulfur cycle                                                     | 109          |
| The Cyanobacteria carry out oxygenic photosynthesis                                                                             | 110          |
| Many marine <i>Cyanobacteria</i> carry out nitrogen fixation                                                                    | 111          |
| The genera <i>Prochlorococcus</i> and <i>Synechococcus</i><br>dominate the picoplankton in large areas of<br>the Earth's oceans | 112          |
| <i>Cyanobacteria</i> are important in the formation of microbial mats in shallow water                                          | 114          |
| The <i>Firmicutes</i> are a major branch of Gram-<br>positive <i>Bacteria</i>                                                   | 114          |
| <i>Epulopiscium fishelsoni</i> and related species<br>are giant bacteria with a unique "viviparous"<br>lifestyle                | 115          |
| The Actinobacteria is a large phylum including the mycobacteria and actinomycetes                                               | 116          |
| The Cytophaga–Flavobacterium–Bacteroides group is morphologically and metabolically diverse                                     | 116          |
| The <i>Planctomycetes</i> are a group with cells that show some similarities to eukarvotes                                      | 117          |
| <i>Verrucomicrobia</i> is a poorly characterized phylum of <i>Bacteria</i>                                                      | 118          |

| The spirochetes are Gram-negative, tightly coiled, flexuous bacteria distinguished by |     |
|---------------------------------------------------------------------------------------|-----|
| very active motility                                                                  | 118 |
| Aquifex and Thermotoga are hyperthermophiles                                          | 118 |
| Conclusions                                                                           | 119 |
| References                                                                            | 119 |
| Further reading                                                                       | 120 |

#### Chapter 5 Marine Archaea

| Several aspects of cell structure and function                                                                   |     |
|------------------------------------------------------------------------------------------------------------------|-----|
| distinguish the Archaea from the Bacteria                                                                        | 122 |
| The <i>Euryarcheaota</i> and <i>Crenarchaeota</i> form the major branches of the <i>Archaea</i>                  | 122 |
| Many members of the <i>Euryarchaeota</i> produce methane                                                         | 122 |
| <i>Archaea</i> in deep sediments can carry out<br>anaerobic oxidation of methane coupled to<br>sulfate reduction | 124 |
| <i>Thermococcus</i> and <i>Pyrococcus</i> are hyperthermophiles found at hydrothermal vents                      | 125 |
| Archaeoglobus and Ferroglobus are<br>hyperthermophilic sulfate-reducers and<br>iron-oxidizers                    | 126 |
| Some <i>Euryarchaeota</i> exist in hypersaline environments                                                      | 126 |
| Nanoarchaeum is an obligate parasite of another archaeon, Igniococcus                                            | 127 |
| The Crenarchaeota include hyperthermophiles<br>and psychrophiles                                                 | 127 |
| Hyperthermophilic Crenarchaeota belong to the order Desulfurococcales                                            | 127 |
| The psychrophilic marine <i>Crenarchaeota</i> are major members of the plankton                                  | 128 |
| Conclusions                                                                                                      | 129 |
| References                                                                                                       | 131 |
| Further reading                                                                                                  | 131 |
|                                                                                                                  | 101 |

#### Chapter 6 Marine Eukaryotic Microbes

| The term "protist" is used to describe an extremely diverse collection of unicellular |     |
|---------------------------------------------------------------------------------------|-----|
| eukaryotic microbes                                                                   | 134 |
| Systems for the classification of eukaryotic<br>microbes are still developing         | 135 |
| Many protists possess flagella                                                        | 135 |
| The euglenids may be phototrophic,<br>heterotrophic, or mixotrophic                   | 136 |
| The bicosoecids are a group of highly active bacterivorous flagellates                | 137 |

| The choanoflagellates have a unique feeding       |     |
|---------------------------------------------------|-----|
| mechanism                                         | 138 |
| Dinoflagellates have critical roles in marine     |     |
| systems                                           | 138 |
| Dinoflagellates undertake diurnal vertical        |     |
| migration                                         | 139 |
| Some dinoflagellates exhibit bioluminescence      | 139 |
| The ciliates are voracious grazers of other       |     |
| protists and bacteria                             | 140 |
| The haptophytes (prymnesiophytes) are major       |     |
| components of ocean phytoplankton                 | 141 |
| Diatoms are extremely diverse and abundant        |     |
| primary producers in the oceans                   | 144 |
| Diatoms and their products—past and               |     |
| present—have many applications                    | 145 |
| Protists in the picoplankton size range are       |     |
| extremely widespread and diverse                  | 145 |
| Raphidophytes are stramenopiles which may         |     |
| cause harmful blooms                              | 146 |
| Thraustochytrids and labyrinthulids play an       |     |
| important role in breakdown and absorption        |     |
| of organic matter                                 | 147 |
| Amoebozoa may be important grazers of             |     |
| bacteria associated with particles                | 148 |
| Radiolarians and foraminifera have highly         |     |
| diverse morphologies with mineral shells          | 148 |
| Marine fungi are especially important in          |     |
| decomposition of complex materials in             |     |
| coastal habitats                                  | 149 |
| Conclusions                                       | 151 |
| References                                        | 151 |
| Further reading                                   | 152 |
|                                                   |     |
| Chapter 7 Marine Viruses 1                        | 53  |
| Viruses are extremely diverse in structure        |     |
| and genetic composition                           | 154 |
| Viruses are the most abundant biological          |     |
| entities in seawater                              | 155 |
| Phages are viruses that infect bacterial and      |     |
| archaeal cells                                    | 157 |
| The life cycle of phages shows a number of        |     |
| distinct stages                                   | 158 |
| Lysogeny occurs when the phage genome is          |     |
| integrated into the host genome                   | 160 |
| Large DNA viruses are important pathogens         |     |
| of planktonic protists                            | 161 |
| Photosynthetic protists are also infected by      |     |
| RNA viruses                                       | 163 |
|                                                   |     |
| The role of viruses as pathogens of heterotrophic |     |

| Loss of infectivity of viruses arises from<br>irreparable damage to the nucleic acid<br>or protein capsid   | 165 |
|-------------------------------------------------------------------------------------------------------------|-----|
| Measurement of virus production rates is<br>important for assessing the role of virus-<br>induced mortality | 165 |
| Viral mortality "lubricates" the biological pump                                                            | 166 |
| Viral mortality plays a major role in structuring diversity of microbial communities                        | 166 |
| Marine viruses show enormous genetic diversity                                                              | 167 |
| Viromes are reservoirs of genetic diversity and exchange                                                    | 167 |
| Conclusions                                                                                                 | 168 |
| References                                                                                                  | 170 |
| Further reading                                                                                             | 171 |

#### Chapter 8 Microbes in Ocean Processes—Carbon Cycling

173

| Development of the microbial loop concept<br>transformed our understanding of ocean           |     |
|-----------------------------------------------------------------------------------------------|-----|
| processes                                                                                     | 174 |
| The fate of carbon dominates consideration of the microbial ecology of the oceans             | 175 |
| Marine phytoplankton are responsible for<br>about half of the global CO <sub>2</sub> fixation | 175 |
| As well as light, photosynthetic activity depends<br>on the availability of nutrients         | 178 |
| The importance of various components of the microbial loop varies according to circumstances  | 179 |
| The microbial loop results in retention of<br>dissolved nutrients                             | 182 |
| Ingestion of bacteria by protists plays a key role<br>in the microbial loop                   | 183 |
| The "viral shunt" catalyzes nutrient regeneration in the upper ocean                          | 184 |
| Eutrophication of coastal waters affects microbial activity                                   | 185 |
| Conclusions                                                                                   | 185 |
| References                                                                                    | 186 |
| Further reading                                                                               | 186 |

#### Chapter 9 Microbes in Ocean Processes—Nitrogen, Sulfur, Iron, and Phosphorus Cycling 187

| NUTRIENT LIMITATION                                                            | 188 |
|--------------------------------------------------------------------------------|-----|
| Key elements may act as limiting nutrients for<br>different groups of microbes | 188 |
| Productivity of surface waters shows marked geographical variations            | 188 |

| Ocean microbes require iron                                                            | 189          |
|----------------------------------------------------------------------------------------|--------------|
| THE NITROGEN CYCLE                                                                     | 190          |
| Major shifts in our understanding of the<br>marine nitrogen cycle are in progress      | 1 <b>9</b> 0 |
| New nitrogen-fixers have been discovered recently                                      | 191          |
| Fixed nitrogen is returned to the inorganic pool by ammonification and nitrification   | 191          |
| Denitrification and anammox reactions return<br>nitrogen to its elemental form         | 192          |
| Microbial processes in sediments are a major contributor to nitrogen cycling           | 1 <b>9</b> 3 |
| THE SULFUR CYCLE                                                                       | 193          |
| The oceans contain large quantities of<br>sulphur—an essential element for life        | 1 <b>9</b> 3 |
| Metabolism of organic sulfur compounds is<br>especially important in surface waters    | 1 <b>9</b> 3 |
| A fraction of DMSP production leads to release<br>of the gas dimethyl sulfide (DMS)    | 1 <b>9</b> 6 |
| Microbial sulfate reduction and sulfide oxidation occur in sediments, vents, and seeps | 196          |
| THE PHOSPHORUS CYCLE                                                                   | 197          |
| Phosphorus is often a limiting or colimiting nutrient                                  | 197          |
| Marine microbes are adapted to low and variable levels of phosphorus                   | 200          |
| Conclusions                                                                            | 201          |
| References                                                                             | 201          |
| Further reading                                                                        | 202          |
|                                                                                        |              |

## Chapter 10 Symbiotic Associations

| 2        | 0 | 3 |
|----------|---|---|
| <b>~</b> | v | - |

| Zooxanthellae and other photosynthetic<br>endosymbionts are vital for the nutrition<br>of many marine animals | 204 |
|---------------------------------------------------------------------------------------------------------------|-----|
| Coral bleaching occurs due to the breakdown<br>of the symbiosis between zooxanthellae<br>and their host       | 205 |
| Scleractinian corals are multipartner symbiotic systems (holobionts)                                          | 206 |
| Photosynthetic zooxanthellae boost the growth of giant clams in nutrient-poor waters                          | 207 |
| Worms and clams at hydrothermal vents obtain nutrition from chemosynthetic bacterial                          |     |
| endosymbionts                                                                                                 | 207 |
| Chemosynthetic symbionts are widely<br>distributed in marine invertebrates                                    | 209 |
| Animals colonizing whale falls depend on                                                                      |     |
| autotrophic and heterotrophic symbionts                                                                       | 212 |

| Some hydrothermal vent animals have dense populations of bacteria on their surface              | 212 |
|-------------------------------------------------------------------------------------------------|-----|
| Some fish and invertebrates use bacteria to make light                                          | 213 |
| The bobtail squid uses bacterial<br>bioluminescence for camouflage                              | 214 |
| Endosymbionts of bryozoans produce<br>compounds that protect the host from<br>predation         | 215 |
| Sponges contain dense communities of specific microbes                                          | 215 |
| Some protists with endosymbionts can switch<br>from heterotrophic to phototrophic<br>metabolism | 218 |
| Viruses may help a sea slug to use "stolen"<br>chloroplasts for photosynthesis                  | 218 |
| Conclusions                                                                                     | 219 |
| References                                                                                      | 219 |
| Further reading                                                                                 | 220 |
| Chapter 11 Microbial Diseases                                                                   |     |

#### Chapter 11 Microbial Diseases of Marine Organisms

| DISEASES OF INVERTEBRATES                        | 224 |
|--------------------------------------------------|-----|
| Diseases of invertebrates have major             |     |
| ecological and economic impact                   | 224 |
| Infectious diseases of corals have emerged       |     |
| as a major threat to their survival              | 224 |
| The fungus Aspergillus sydowii caused a mass     |     |
| mortality of sea fans in the Caribbean Sea       | 226 |
| Black band disease of corals is a long-          |     |
| established disease of corals worldwide          | 226 |
| White plague and white pox are major             |     |
| diseases affecting Caribbean reefs               | 227 |
| Extensive tissue necrosis of corals may involve  |     |
| bacteria and protistan parasites                 | 227 |
| The role of viruses in coral diseases is unclear | 227 |
| Sponge disease is a poorly investigated global   |     |
| phenomenon                                       | 228 |
| Vibrios are a major cause of important           |     |
| diseases of cultured mollusks                    | 228 |
| A wide range of other bacteria can cause         |     |
| infections in bivalve mollusks                   | 229 |
| Virus infections are a major problem in          |     |
| oyster culture                                   | 232 |
| Bacterial and viral diseases are major problems  |     |
| in aquaculture of crustaceans                    | 232 |
| Expansion of intensive prawn culture has         |     |
| been accompanied by a dramatic spread            |     |
| in viral diseases                                | 233 |
| Bacteria can cause epizootics with high          |     |
| mortalities in crustaceans                       | 234 |
|                                                  |     |

| Parasitic dinoflagellates are major pathogens                                                                                     | 225      |
|-----------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                                   | 235      |
| Microbial diseases of fish cause major losses<br>in aquaculture, but effects on natural                                           | 235      |
| The importance of fish diseases in aquaculture<br>has led to the development of specialized<br>branches of veterinary science and | 235      |
| diagnostic microbiology                                                                                                           | 236      |
| range of pathogenic mechanisms                                                                                                    | 238      |
| Vibrios are responsible for some of the main<br>infections of marine fish                                                         | 238      |
| Pasteurellosis is a major disease in warm-<br>water marine fish                                                                   | 241      |
| Aeromonas salmonicida has a broad geographic range affecting fish in fresh and                                                    | ;        |
| marine waters                                                                                                                     | 241      |
| Marine flexibacteriosis is caused by an<br>opportunist pathogen of low virulence                                                  | 243      |
| Piscirickettsia and Francisella are intracellular                                                                                 |          |
| proteobacteria causing economically important diseases in salmon and cod                                                          | 243      |
| Intracellular Gram-positive bacteria cause<br>chronic infections of fish                                                          | 244      |
| Several Gram-positive cocci cause diseases affecting the central nervous system of fish                                           | 245      |
| Viruses cause numerous diseases of marine fish                                                                                    | 245      |
| Infectious salmon anemia virus is one of the most important pathogens in salmon culture                                           | 246      |
| Viral hemorrhagic septicemia virus infects<br>many species of wild fish                                                           | 246      |
| Lymphocystis virus causes a highly contagious<br>chronic skin infection of fish                                                   | 247      |
| Birnaviruses appear to be widespread in marine fish and invertebrates                                                             | 247      |
| Viral nervous necrosis is an emerging disease                                                                                     | 211      |
| with major impact                                                                                                                 | 247      |
| toxins, and direct physical effects                                                                                               | 247      |
| Dinoflagellate and diatom toxins can affect<br>marine mammals                                                                     | 248      |
| Mass mortalities in the late twentieth century<br>prompted the study of viral diseases of marine<br>mammals                       | e<br>249 |
| Viruses from nine different families have                                                                                         |          |
| Deen linked to diseases of marine mammals<br>Several species of bacteria and fungi infact                                         | 250      |
| marine mammals                                                                                                                    | 251      |
| Sea turtles are affected by a virus promoting growth of tumors                                                                    | 251      |

283

| DISEASES OF SEAWEEDS AND SEAGRASSES                                                                                         | 252 |
|-----------------------------------------------------------------------------------------------------------------------------|-----|
| Fungi, bacteria, and protists cause ecologically<br>and economically important diseases of                                  | 252 |
| Many species of algae contain virus like                                                                                    | 252 |
| particles                                                                                                                   | 253 |
| Conclusions                                                                                                                 | 254 |
| References                                                                                                                  | 254 |
| Further reading                                                                                                             | 256 |
| Chapter 12 Marine Microbes as                                                                                               |     |
| Agents of Human Disease                                                                                                     | 259 |
| Pathogenic vibrios are common in marine<br>and estuarine environments                                                       | 260 |
| Cholera is a major human disease with a reservoir in coastal environments                                                   | 260 |
| <i>Vibrio cholerae</i> produces disease in humans<br>owing to production of a toxin and other<br>pathogonic foctors         | 200 |
| Control of cholera remains a major world                                                                                    | 201 |
| health problem                                                                                                              | 261 |
| in the virulence of <i>Vibrio cholerae</i>                                                                                  | 262 |
| Non-O1 and non-O139 serotypes of <i>Vibrio</i><br><i>cholerae</i> are widely distributed in coastal<br>and estuarine waters | 263 |
| Vibrio vulnificus causes serious illness<br>associated with seafood                                                         | 263 |
| Distribution of <i>Vibrio vulnificus</i> in the marine<br>environment is affected by temperature<br>and salinity            | 265 |
| <i>Vibrio vulnificus</i> and other marine vibrios<br>can cause wound infections                                             | 265 |
| Seafood-borne infection by <i>Vibrio</i><br><i>parahaemolyticus</i> is common throughout                                    | 266 |
| Scombroid fish poisoning is a result of bacterial                                                                           | 200 |
| enzymic activity                                                                                                            | 267 |
| seafood                                                                                                                     | 268 |
| Fugu poisoning is caused by a neurotoxin of probable bacterial origin                                                       | 268 |
| Some diseases of marine mammals and fish can be transmitted to humans                                                       | 269 |
| Toxic dinoflagellates and diatoms pose serious threats to human health                                                      | 270 |
| Paralytic shellfish poisoning is caused by<br>saxitoxins produced by dinoflagellates                                        | 270 |
| Management of paralytic shellfish poisoning depends on assaying toxins in shellfish                                         | 271 |

| Brevetoxin can cause illness via ingestion or<br>inhalation during red tides                                                             | 272 |
|------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Diarrhetic shellfish poisoning and azaspiracid<br>poisoning result in gastrointestinal symptoms                                          | 273 |
| Amnesic shellfish poisoning is caused by toxic diatoms                                                                                   | 274 |
| Ciguatera fish poisoning has a major impact<br>on the health of tropical islanders                                                       | 274 |
| Dinoflagellates and diatoms probably produce toxins as antipredator defense mechanisms                                                   | 275 |
| The incidence of harmful algal blooms and toxin<br>associated diseases is increasing owing to the<br>interaction of many complex factors | 1-  |
| Coastal waters must be regularly monitored<br>to assess the development of harmful algal                                                 |     |
| blooms                                                                                                                                   | 277 |
| Conclusions                                                                                                                              | 279 |
| References                                                                                                                               | 279 |
| Further reading                                                                                                                          | 281 |
| Chapter 13 Microbial Aspects                                                                                                             |     |

#### Chapter 13 Microbial Aspects of Marine Biofouling, Biodeterioration, and Pollution

|                                                      | 204     |
|------------------------------------------------------|---------|
| BIOFOULING AND BIODETERIORATION                      | 284     |
| Microbial biofilms are often the first phase         |         |
| in biofouling                                        | 284     |
| Microbially induced corrosion occurs as a            |         |
| result of the activities of microorganisms           |         |
| within biofilms on metals, alloys and                |         |
| composite materials                                  | 284     |
| Microbes cause biodeterioration of marine            |         |
| wooden structures and timber                         | 285     |
| Microbial growth and metabolism are the              |         |
| major cause of spoilage of seafood produc            | ts 285  |
| Processing, packaging, and inhibitors of             |         |
| spoilage are used to extend shelf-life               | 286     |
| Some seafood products are produced by                |         |
| deliberate manipulation of microbial                 |         |
| activities                                           | 287     |
| MICROBIAL ASPECTS OF MARINE POLLUTIO                 | ON      |
| BY SEWAGE                                            | 287     |
| Coastal pollution by wastewater is a signification   | ant     |
| source of human disease                              | 287     |
| A range of human viruses are present in              |         |
| seawater contaminated by sewage                      | 288     |
| Fecal indicator bacteria have been used for          |         |
| many years to test public health risks in            |         |
| marine water                                         | 289     |
| <i>Escherichia coli</i> and coliforms are unreliable | •       |
| indicators of human fecal pollution of the           | sea 291 |
|                                                      |         |

| The fecal streptococci or enterococci are more<br>reliable indicators for monitoring marine<br>water quality           | 291 |
|------------------------------------------------------------------------------------------------------------------------|-----|
| Molecular-based methods permit quicker<br>analysis of indicator organisms and microbial<br>source tracking             | 292 |
| A variety of alternative indicator species have<br>been investigated                                                   | 293 |
| Different countries use different quality<br>standards for marine waters                                               | 294 |
| Sewage pollution of water in which shellfish<br>are harvested for human consumption<br>poses a serious health hazard   | 294 |
| Many countries have microbiological standards<br>for the classification of waters in which<br>shellfish are cultivated | 297 |
| Direct testing for pathogens in shellfish is<br>possible using molecular techniques                                    | 297 |
| OIL AND OTHER CHEMICAL POLLUTION                                                                                       | 298 |
| Oil pollution of the marine environment is a major problem                                                             | 298 |
| A range of microbes are responsible for<br>biodegradation of oil at sea                                                | 299 |
| The fate of oil depends on a combination of physical and biological processes                                          | 299 |
| Biodegradation is enhanced by addition of emulsifiers                                                                  | 301 |
| Addition of nutrients is necessary to increase the rate of oil biodegradation                                          | 301 |
| Bioremediation has been used to lessen the<br>impact of oil spills on vulnerable coasts                                | 302 |
| Microbes are important in the distribution of persistent organic pollutants                                            | 302 |
| Bacteria are effective in the removal of heavy metals from contaminated sediments                                      | 303 |
| Microbial systems can be used for monitoring the environment for toxic chemicals                                       | 303 |
| Mobilization of mercury by bacterial metabolism<br>leads to accumulation of toxic mehylmercury                         | 304 |
| Conclusions                                                                                                            | 304 |
| References                                                                                                             | 305 |
| Further reading                                                                                                        | 306 |

## Chapter 14 Marine Microbes and Biotechnology

| Enzymes from marine microbes have many                                        |     |
|-------------------------------------------------------------------------------|-----|
| applications                                                                  | 308 |
| DNA polymerases from hydrothermal vent organisms are widely used in molecular |     |
| biology                                                                       | 310 |

307

| Chapter 15 Concluding Remarks                                                                                     | 331 |
|-------------------------------------------------------------------------------------------------------------------|-----|
| Further reading                                                                                                   | 329 |
| References                                                                                                        | 327 |
| Conclusions                                                                                                       | 327 |
| Probiotics, prebiotics, and immunostimulants are widely used in marine aquaculture                                | 326 |
| DNA vaccination or genetic immunization<br>depends on expression of a sequence<br>encoding the protective antigen | 323 |
| Recombinant DNA technology is used to<br>produce vaccines for diseases caused by<br>viruses and some bacteria     | 322 |
| Vaccination of finfish is widely used in<br>aquaculture                                                           | 321 |
| Resistance to antimicrobial agents is a major problem in aquaculture                                              | 320 |
| Most bacterial pathogens can be killed or<br>inhibited by antimicrobial agents                                    | 319 |
| Microbial biotechnology has many applications in aquaculture                                                      | 317 |
| Marine microbes are a rich source for<br>biomimetics, nanotechnology, and<br>bioelectronics                       | 316 |
| New approaches to antifouling have been<br>discovered through study of microbial<br>colonization of surfaces      | 316 |
| Marine microbes are the source of a range<br>of health-promoting products                                         | 315 |
| New antimicrobial compounds may be<br>discovered through study of complex<br>microbial communities                | 315 |
| Bioactive compounds from marine invertebrates<br>may be produced by microbial symbionts                           | 313 |
| Marine microbes are a rich source of<br>biomedical products                                                       | 313 |
| Microalgae are promising new sources of biofuels                                                                  | 312 |
| Polymers from marine bacteria are finding increasing applications                                                 | 312 |
| Metagenomics and bioinformatics lead to new biotechnological developments                                         | 311 |

# Glossary333Abbreviations341Index343Color plates367