Introduction to Plant Physiology

Fourth Edition

William G. Hopkins and Norman P. A. Hüner

The University of Western Ontario

Contents

Chapter	1	•	Plant	Cells and	Water	1
---------	---	---	-------	-----------	-------	---

- 1.1 Water has Unique Physical and Chemical Properties 2
- 1.2 The Thermal Properties of Water are Biologically Important 3
 - 1.2.1 Water Exhibits a Unique Thermal Capacity 3
 - 1.2.2 Water Exhibits a High Heat of Fusion and Heat of Vaporization 3
- 1.3 Water is the Universal Solvent 4
- 1.4 Polarity of Water Molecules Results in Cohesion and Adhesion 4
- 1.5 Water Movement may be Governed by Diffusion or by Bulk Flow 5
 - 1.5.1 Bulk Flow is Driven by Hydrostatic Pressure 5
 - 1.5.2 Fick's First Law Describes the Process of Diffusion 5
- 1.6 Osmosis is the Diffusion of Water Across a Selectively Permeable Membrane 6
 - 1.6.1 Plant Cells Contain an Array of Selectively Permeable Membranes 7
 - 1.6.2 Osmosis in Plant Cells is Indirectly Energy
 Dependent 8
 - 1.6.3 The Chemical Potential of Water has an Osmotic as Well as a Pressure Component 9
- 1.7 Hydrostatic Pressure and Osmotic Pressure are Two Components of Water Potential 11
- 1.8 Water Potential is the Sum of its Component Potentials 11
- Dynamic Flux of H₂O is Associated with Changes in Water Potential 12

- 1.10 Aquaporins Facilitate the Cellular Movement of Water 13
- 1.11 Two-Component Sensing/Signalling Systems are Involved in Osmoregulation 15

Summary 17 Chapter Review 17 Further Reading 17

Chapter 2 • Whole Plant Water Relations 19

- 2.1 Transpiration is Driven by Differences in Vapor Pressure 20
- 2.2 The Driving Force of Transpiration is Differences in Vapor Pressure 21
- 2.3 The Rate of Transpiration is Influenced by Environmental Factors 22
 - 2.3.1 What are the Effects of Humidity? 23
 - 2.3.2 What is the Effects of Temperature? 23
 - 2.3.3 What is the Effect of Wind? 24
- 2.4 Water Conduction Occurs via Tracheary Elements 24
- 2.5 The Ascent of Xylem SAP is Explained by Combining Transpiration with the Cohesive Forces of Water 27
 - 2.5.1 Root Pressure is Related to Root Structure 28
 - 2.5.2 Water Rise by Capillarity is due to Adhesion and Surface Tension 29
 - 2.5.3 The Cohesion Theory Best Explains the Ascent of Xylem Sap 30

viii Contents

Water Loss due to Transpiration must be

Roots Absorb and Transport Water 34

Radial Movement of Water Through the Root

2.6.1 Soil is a Complex Medium 33

The Permeability of Roots to Water

Replenished 33

Gradients 46

Active Transport 49

Pumps 49

3.5

3.4.2 The Nernst Equation Helps to Predict Whether an

Ion is Exchanged Actively or Passively 47

Electrogenic Pumps are Critical for Cellular

3.5.1 Active Transport is Driven by ATPase-Proton

3.5.3 K+ Exchange is Mediated by Two Classes of

Transport Proteins 51

3.5.2 The ATPase-Proton Pumps of Plasma Membranes

and Vacuolar Membranes are Different 50

Varies 35

2.6

2.7

2.8

2.9

	Involves Two Possible Pathways 36		of the Root Epidermal and Cortical
	Summary 37		Cells 54
	Chapter Review 37	3.8	The Radial Path of Ion Movement Through
	Further Reading 37		Roots 54
Вох	2.1 • Why Transpiration? 25		3.8.1 Ions Entering the Stele Must First be Transported from the Apparent Free Space into the Symplast 54
Ch	apter 3 • Roots, Soils, and Nutrient Uptake 39		3.8.2 Ions are Actively Secreted into the Xylem Apoplast 55
3.1	The Soil as a Nutrient Reservoir 40		3.8.3 Emerging Secondary Roots may Contribute to the Uptake of Some Solutes 55
	3.1.1 Colloids are a Significant Component of Most	3.9	Root-Microbe Interactions 56
3.2	Soils 40 3.1.2 Colloids Present a Large, Negatively Charged Surface Area 40 3.1.3 Soil Colloids Reversibly Adsorb Cations from the Soil Solution 41 3.1.4 The Anion Exchange Capacity of Soil Colloids is Relatively Low 41 Nutrient Uptake 42 3.2.1 Nutrient Uptake by Plants Requires Transport of the Nutrient Across Root Cell Membranes 42 3.2.2 Simple Diffusion is a Purely Physical Process 42	Вох	 3.9.1 Bacteria Other than Nitrogen Fixers Contribute to Nutrient Uptake by Roots 56 3.9.2 Mycorrhizae are Fungi that Increase the Volume of the Nutrient Depletion Zone Around Roots 57 Summary 58 Chapter Review 58 Further Reading 59 3.1 • Electrophysiology—Exploring Ion Channels 44
	3.2.3 The Movement of Most Solutes Across Membranes Requires the Participation of Specific Transport Proteins 43 3.2.4 Active Transport Requires the Expenditure of	Cha	pter 4 • Plants and Inorganic Nutrients 61
	Metabolic Energy 43	4.1	Methods and Nutrient Solutions 62
3.3	Selective Accumulation of Ions by Roots 46		4.1.1 Interest in Plant Nutrition is Rooted in the Study of
3.4	Electrochemical Gradients and Ion		Agriculture and Crop Productivity 62
	Movement 46		4.1.2 The Use of Hydroponic Culture Helped to Define
	3.4.1 Ions Move in Response to Electrochemical		the Mineral Requirements of Plants 62

4.2

3.6

3.7

Cellular Ion Uptake Processes are

Root Architecture is Important to Maximize Ion

Diffusion into the Apparent Free Space 53

3.7.2 Apparent Free Space is Equivalent to the Apoplast

3.7.1 A First Step in Mineral Uptake by Roots is

4.1.3 Modern Techniques Overcome Inherent

Disadvantages of Simple Solution

The Essential Nutrient Elements 65

Either Macronutrients or

Micronutrients 65

Plant Growth and Development 65

4.2.3 Determining Essentiality of Micronutrients

Presents Special Problems 65

4.2.1 Seventeen Elements are Deemed to be Essential for

4.2.2 The Essential Nutrients are Generally Classed as

Culture 63

Interactive 52

Uptake 52

ix

Photoreceptors Absorb Light for use in a

Physiological Process 100

Contents			i:
4.3	Beneficial Elements 66 4.3.1 Sodium is an Essential Micronutrient for C4 Plants 66	Chape	ter 5 • Bioenergetics and ATP Synthesis 77
	 4.3.2 Silicon May be Beneficial for a Variety of Species 67 4.3.3 Cobalt is Required by Nitrogen-Fixing Bacteria 67 4.3.4 Some Plants Tolerate High Concentrations of Selenium 67 	I. 5 5	Sioenergetics and Energy Transformations in iving Organisms 78 1.1.1 The Sun is a Primary Source of Energy 78 1.2 What is Bioenergetics? 78 1.3 The First Law of Thermodynamics Refers to Energy Conservation 79
4.4	Nutrient Functions and Deficiency	5	1.4 The Second Law of Thermodynamics Refers to
	Symptoms 67 4.4.1 A Plant's Requirement for a Particular Element is Defined in Terms of Critical Concentration 67		Entropy and Disorder 79 1.5 The Ability to do Work is Dependent on the Availability of Free Energy 80 1.6 Free Energy is Related to Chemical
	4.4.2 Nitrogen is a Constituent of Many Critical		Equilibria 80
	Macromolecules 68 4.4.3 Phosphorous is Part of the Nucleic Acid Backbone and has a Central Function in Intermediary Metabolism 69	R	nergy Transformations and Coupled eactions 81 2.1 Free Energy of ATP is Associated with Coupled Phosphate Transfer Reactions 81
	4.4.4 Potassium Activates Enzymes and Functions in Osmoregulation 69	5.	2.2 Free Energy Changes are Associated with Coupled Oxidation–Reduction Reactions 83
	4.4.5 Sulfur is an Important Constituent of Proteins,Coenzymes, and Vitamins 70		nergy Transduction and the Chemiosmotic ynthesis of ATP 85
	4.4.6 Calcium is Important in Cell Division, Cell Adhesion, and as a Second Messenger 70		3.1 Chloroplasts and Mitochondria Exhibit Specific Compartments 85
	4.4.7 Magnesium is a Constituent of the Chlorophyll Molecule and an Important Regulator of Enzyme Reaction 70		3.2 Chloroplasts and Mitochondria Synthesize ATP by Chemiosmosis 90 ummary 91
	4.4.8 Iron is Required for Chlorophyll Synthesis and Electron Transfer	C	hapter Review 91 urther Reading 91
	Reactions 71	Box 5.	1 • Plastid Biogenesis 86
	 4.4.9 Boron Appears to have a Role in Cell Division and Elongation and Contributes to the Structural Integrity of the Cell Wall 73 4.4.10 Copper is a Necessary Cofactor for Oxidative 		er 6 • The Dual Role of Sunlight: Energy and Information 93
	Enzymes 73 4.4.11 Zinc is an Activator of Numerous		he Physical Nature of Light 93 1.1 Light is Electromagnetic Energy, Which Exists in
	Enzymes 73 4.4.12 Manganese is an Enzyme Cofactor as Well as Part of the Oxygen-Evolving Complex in the Chloroplast 74	6.	Two Forms 93 1.2 Light can be Characterized as a Wave Phenomenon 94
	4.4.13 Molybdenum is a Key Component of Nitrogen Metabolism 74		1.3 Light Can be Characterized as a Stream of Discrete Particles 94
	4.4.14 Chlorine has a Role in Photosynthetic Oxygen Evolution and Charge Balance Across Cellular Membranes 74		1.4 Light Energy can Interact with Matter 951.5 How Does One Illustrate the Efficiency of Light Absorption and its Physiological Effects? 97
	4.4.15 The Role of Nickel is not Clear 74	6.	1.6 Accurate Measurement of Light is Important in
4.5	Toxicity of Micronutrients 75 Summary 75	6.2 T	Photobiology 98 ne Natural Radiation Environment 99
		U 1.	20 1 1000101 Madiation Little Office 77

Chapter Review 76

Further Reading 76

Contents X

Box 7.2 • The Case for Two

Photosystems 125

	6.3.1 Chlorophylls are Primarily Responsible for Harvesting Light Energy for Photosynthesis 100	Ch	apter 8 • Energy Conservation in Photosynthesis: CO ₂ Assimilation 129
	6.3.2 Phycobilins Serve as Accessory Light-Harvesting Pigments in Red Algae and Cyanobacteria 102	8.1	Stomatal Complex Controls Leaf Gas Exchange and Water Loss 130
	6.3.3 Carotenoids Account for the Autumn Colors 103	8.2 8.3	CO ₂ Enters the Leaf by Diffusion 132 How Do Stomata Open and Close? 133
	6.3.4 Cryptochrome and Phototropin are Photoreceptors Sensitive to Blue Light and UV-A	8.4	Stomatal Movements are Also Controlled by External Environmental Factors 135
	radiation 103 6.3.5 UV-B Radiation May Act as a Developmental		8.4.1 Light and Carbon Dioxide Regulate Stomatal Opening 135
	Signal 105 6.3.6 Flavonoids Provide the Myriad Flower Colors and	0.7	8.4.2 Stomatal Movements Follow Endogenous Rhythms 136
	Act as a Natural Sunscreen 105 6.3.7 Betacyanins and Beets 106	8.5	The Photosynthetic Carbon Reduction (PCR) Cycle 136
	Summary 107 Chapter Review 107		8.5.1 The PCR Cycle Reduces CO ₂ to Produce a Three-Carbon Sugar 137
	Further Reading 107		8.5.2 The Carboxylation Reaction Fixes the CO ₂ 137
Cha	pter 7 • Energy Conservation in Photosynthesis: Harvesting Sunlight 109		8.5.3 ATP and NADPH are Consumed in the PCR Cycle 1388.5.4 What are the Energetics of the PCR Cycle? 139
7.1	Leaves are Photosynthetic Machines that Maximize the Absorption of Light 110	8.6	The PCR Cycle is Highly Regulated 139 8.6.1 The Regeneration of RuBP is
7.2	Photosynthesis is an Oxidation-Reduction Process 112		Autocatalytic 140 8.6.2 Rubisco Activity is Regulated Indirectly by
7.3	Photosynthetic Electron Transport 114 7.3.1 Photosystems are Major Components of the Photosynthetic Electron Transport		Light 140 8.6.3 Other PCR Enzymes are also Regulated by Light 141
	Chain 114 7.3.2 Photosystem II Oxidizes Water to Produce Oxygen 117	8.7	Chloroplasts of C3 Plants also Exhibit Competing Carbon Oxidation Processes 142
	7.3.3 The Cytochrome Complex and Photosystem I Oxidize Plastoquinol 119		8.7.1 Rubisco Catalyzes the Fixation of Both CO ₂ and O ₂ 142
7.4	Photophosphorylation is the Light-Dependent Synthesis of ATP 120		8.7.2 Why Photorespiration? 1438.7.3 In Addition to PCR, Chloroplasts Exhibit an Oxidative Pentose Phosphate Cycle 145
7.5	Lateral Heterogeneity is the Unequal Distribution of Thylakoid Complexes 122		Summary 149
7.6	Cyanobacteria are Oxygenic 123		Chapter Review 149 Further Reading 150
7.7	Inhibitors of Photosynthetic Electron Transport are Effective Herbicides 124 Summary 127	Box	8.1 • Enzymes 146
	Chapter Review 127 Further Reading 128	Cha	pter 9 • Allocation, Translocation, and Partitioning of
Box	7.1 • Historical Perspective—The Discovery		Photoassimilates 151
	of Photosynthesis 113	9.1	Starch and Sucrose are Biosynthesized in Two Different Compartments 152

9.1.1 Starch is Biosynthesized in the Stroma 152

9.1.2 Sucrose is Biosynthesized in the Cytosol 153

Contents xi

9.2	Starch and Sugress Piggranth asia are Commercial		10.2.1 Limis Dunainos is a Daharankian
9.2	Starch and Sucrose Biosynthesis are Competitive Processes 154		10.2.4 Limit Dextrinase is a Debranching Enzyme 176
9.3	Fructan Biosynthesis is An Alternative Pathway For Carbon Allocation 156		10.2.5 α-Glucosidase Hydrolyzes Maltose 17710.2.6 Starch Phosphorylase Catalyzes the
9.4	Photoassimilates are Translocated Over Long Distances 156		Phosphorolytic Degradation of Starch 177
	9.4.1 What is the Composition of the Photoassimilate	10.3	Fructan Mobilization is Constitutive 178
	Translocated by the Phloem? 158	10.4	Glycolysis Converts Sugars to Pyruvic
9.5	Sieve Elements are the Principal Cellular		Acid 178
	Constituents of the Phloem 159		10.4.1 Hexoses Must be Phosphorylated to Enter
	9.5.1 Phloem Exudate Contains a Significant Amount of		Glycolysis 178
	Protein 160		10.4.2 Triose Phosphates are Oxidized to
9.6	Direction of Translocation is Determined by		Pyruvate 180
	Source-Sink Relationships 161	10.5	The Oxidative Pentose Phosphate Pathway is an
9.7	Phloem Translocation Occurs by Mass		Alternative Route for Glucose
	Transfer 161		Metabolism 180
9.8	Phloem Loading and Unloading Regulate	10.6	The Fate of Pyruvate Depends on the Availability
	Translocation and Partitioning 163	10.7	of Molecular Oxygen 181
	9.8.1 Phloem Loading can Occur Symplastically or	10.7	Oxidative Respiration is Carried out by the Mitochondrion 182
	Apoplastically 164		10.7.1 In The Presence of Molecular Oxygen, Pyruvate
	9.8.2 Phloem Unloading May Occur Symplastically or Apoplastically 166		is Completely Oxidized to CO ₂ and Water by
9.9	Photoassimilate is Distributed Between		the Citric Acid Cycle 182
7.7	Different Metabolic Pathways and Plant		10.7.2 Electrons Removed from Substrate in the Citric
	Organs 166		Acid Cycle are Passed to Molecular Oxygen
	9.9.1 Photoassimilates May be Allocated to a Variety of		Through the Mitochondrial Electron Transport
	Metabolic Functions in the Source or The		Chain 183
	Sink 167	10.8	Energy is Conserved in the Form of ATP in
	9.9.2 Distribution of Photoassimilates Between		Accordance with Chemiosmosis 185
	Competing Sinks is Determined by Sink	10.9	Plants Contain Several Alternative Electron
	Strength 168		Transport Pathways 186
9.10	Xenobiotic Agrochemicals are Translocated in the		10.9.1 Plant Mitochondria Contain External
	Phloem 170		Dehydrogenases 186
	Summary 170		10.9.2 Plants have a Rotenone-Insensitive NADH
	Chapter Review 171		Dehydrogenase 186
	Further Reading 171		10.9.3 Plants Exhibit Cyanide-Resistant
		10.10	Respiration 187
		10.10	Many Seeds Store Carbon as Oils that are Converted to Sugar 188
Cha	pter 10 • Cellular Respiration:	10 11	Respiration Provides Carbon Skeletons for
	Unlocking the Energy Stored	10.11	Biosynthesis 189
	in Photoassimilates 173	10.12	Respiratory Rate Varies with Development and
10.1	Cellular Respiration Consists of a Series of	10.12	Metabolic State 191
10.1	Pathways by Which Photoassimilates are	10.13	Respiration Rates Respond to Environmental
	Oxidized 174	20.25	Conditions 192
10.2	Starch Mobilization 175		10.13.1 Light 192
	10.2.1 The Hydrolytic Degradation of Starch Produces		10.13.2 Temperature 192
	Glucose 175		10.13.3 Oxygen Availability 193
	10.2.2 α-Amylase Produces Maltose and Limit		Summary 193
	Dextrins 176		Chapter Review 194
	10.2.3 β-Amylase Produces Maltose 176		Further Reading 194

xii Contents

Cha	pter 11 • Nitrogen Assimilation 195	12.2	Carbon Economy is Dependent on the Balance Between Photosynthesis and
11.1	The Nitrogen Cycle: A Complex Pattern of		Respiration 214
	Exchange 195	12.3	Productivity is Influenced by a Variety of
	11.1.1 Ammonification, Nitrification, and		Environmental Factors 215
	Denitrification are Essential Processes in the		12.3.1 Fluence Rate 215
	Nitrogen Cycle 196		12.3.2 Available CO ₂ 216
11.2	Biological Nitrogen Fixation is Exclusively		12.3.3 Temperature 218
	Prokaryotic 196		12.3.4 Soil Water Potential 219
	11.2.1 Some Nitrogen-Fixing Bacteria are Free-Living Organisms 196		12.3.5 Nitrogen Supply Limits Productivity 219
	11.2.2 Symbiotic Nitrogen Fixation Involves Specific		12.3.6 Leaf Factors 220
	Associations Between Bacteria and		Summary 221
	Plants 197		Chapter Review 222
11.3	Legumes Exhibit Symbiotic Nitrogen		Further Reading 222
	Fixation 197		
	11.3.1 Rhizobia Infect the Host Roots, Which Induces		
	Nodule Development 198	C1	42 7 451
11.4	The Biochemistry of Nitrogen Fixation 200	Chap	oter 13 • Responses of Plants to
	11.4.1 Nitrogen Fixation is Catalyzed by the Enzyme		Environmental Stress 223
	Dinitrogenase 200	13.1	What is Plant Stress? 223
	11.4.2 Nitrogen Fixation is Energetically Costly 201	13.2	Plants Respond to Stress in Several Different
	11.4.3 Dinitrogenase is Sensitive to Oxygen 202		Ways 224
	11.4.4 Dinitrogenase Results in the Production of	13.3	Too Much Light Inhibits
	Hydrogen Gas 202		Photosynthesis 225
11.5	The Genetics of Nitrogen Fixation 203		13.3.1 The D1 Repair Cycle Overcomes Photodamage to PSII 227
	11.5.1 NIF Genes Code for Dinitrogenase 203	13.4	
	11.5.2 NOD Genes and NIF Genes Regulate	13.4	Water Stress is a Persistent Threat to Plant Survival 229
	Nodulation 203		13.4.1 Water Stress Leads to Membrane
	11.5.3 What is the Source of Heme For		Damage 230
11.6	Leghemoglobin? 204		13.4.2 Photosynthesis is Particularly Sensitive to Water
11.6	NH ₃ Produced by Nitrogen Fixation is Converted to Organic Nitrogen 204		Stress 230
	11.6.1 Ammonium is Assimilated by		13.4.3 Stomata Respond to Water Deficit 230
	GS/GOGAT 204	13.5	Plants are Sensitive to Fluctuations in
	11.6.2 PII Proteins Regulate GS/GOGAT 205		Temperature 233
	11.6.3 Fixed Nitrogen is Exported as Asparagine and		13.5.1 Many Plants are Chilling Sensitive 233
	Ureides 206		13.5.2 High-Temperature Stress Causes Protein
11.7	Plants Generally Take up Nitrogen in the Form	13.6	Denaturation 234
	of Nitrate 207	13.0	Insect Pests and Disease Represent Potential Biotic Stresses 235
11.8	Nitrogen Cycling: Simultaneous Import and		13.6.1 Systemic Acquired Resistance
110	Export 208		Represents a Plant Immune
11.9	Agricultural and Ecosystem Productivity is		Response 236
	Dependent on Nitrogen Supply 209		13.6.2 Jasmonates Mediate Insect and Disease
	Summary 211 Chapter Review 211		Resistance 237
	Further Reading 211	13.7	There are Features Common to all
	G		Stresses 237
Chap	ter 12 • Carbon and Nitrogen		Summary 238
	Assimilation and Plant		Chapter Review 238
	Productivity 213		Further Reading 238
12.1	Productivity Refers to an Increase in	Box 1	3.1 • Monitoring Plant Stress by
	Biomass 213		Chlorophyll Fluorescence 228

Contents xiii

Chapter 14 • Acclimation to Environmental Stress 241

14.1 Plant Acclimation is a Time-Dependent Phenomenon 242

14.2 Acclimation is Initiated by Rapid, Short-Term Responses 242

- 14.2.1 State Transitions Regulate Energy Distribution in Response to Changes in Spectral Distribution 242
- 14.2.2 Carotenoids Serve a Dual Function: Light Harvesting and Photoprotection 244
- 14.2.3 Osmotic Adjustment is a Response to Water Stress 247
- 14.2.4 Low Temperatures Induce Lipid Unsaturation and Cold Regulated Genes in Cold Tolerant Plants 248
- 14.2.5 Q₁₀ for Plant Respiration Varies as a Function of Temperature 248

14.3 Long-Term Acclimation Alters Phenotype 249

- 14.3.1 Light Regulates Nuclear Gene Expression and Photoacclimation 249
- 14.3.2 Does the Photosynthetic Apparatus Respond to Changes in Light Quality? 252
- 14.3.3 Acclimation to Drought Affects Shoot–RootRatio and Leaf Area 253
- 14.3.4 Cold Acclimation Mimics
 Photoacclimation 254

14.4 Freezing Tolerance in Herbaceous Species is a Complex Interaction Between Light and Low Temperature 255

- 14.4.1 Cold Acclimated Plants Secrete AntifreezeProteins 256
- 14.4.2 North Temperate Woody Plants Survive Freezing Stress 256

14.5 Plants Adjust Photosynthetic Capacity in Response to High Temperature 257

14.6 Oxygen may Protect During Accimation to Various Stresses 258

Summary 259
Chapter Review 259
Further Reading 260

Chapter 15 • Adaptations to the Environment 261

- 15.1 Sun and Shade Adapted Plants Respond Differentially to Irradiance 262
- 15.2 C4 Plants are Adapted to High Temperature and Drought 263
 - 15.2.1 The C4 Syndrome is Another Biochemical Mechanism to Assimilate CO₂ 263

- 15.2.2 The C4 Syndrome is Usually Associated with Kranz Leaf Anatomy 265
- 15.2.3 The C4 Syndrome has Ecological Significance 265
- 15.2.4 The C4 Syndrome is Differentially Sensitive to Temperature 265
- 15.2.5 The C4 Syndrome is Associated with Water Stress 266

15.3 Crassulacean Acid Metabolism is an Adaptation to Desert Life 267

- 15.3.1 Is CAM a Variation of the C4 Syndrome? 268
- 15.3.2 CAM Plants are Particularly Suited to Dry Habitats 269

15.4 C4 and CAM Photosynthesis Require Precise Regulation and Temporal Integration 269

15.5 Plant Biomes Reflect Myriad Physiological Adaptations 270

- 15.5.1 Tropical Rain Forest Biomes Exhibit the Greatest Plant Biodiversity 270
- 15.5.2 Evapotranspiration is a Major Contributor to Weather 271
- 15.5.3 Desert Perennials are Adapted to Reduce
 Transpiration and Heat Load 272
- 15.5.4 Desert Annuals are Ephemeral 273

Summary 273

Chapter Review 274

Further Reading 274

Chapter 16 • Development: An Overview 275

16.1 Growth, Differentiation, and Development 275

- 16.1.1 Development is the Sum of Growth and Differentiation 275
- 16.1.2 Growth is an Irreversible Increase in Size 276
- 16.1.3 Differentiation Refers To Qualitative Changes That Normally Accompany Growth 276

16.2 Meristems are Centers of Plant Growth 277

16.3 Seed Development and Germination 279

- 16.3.1 Seeds are Formed in the Flower 279
- 16.3.2 Seed Development and Maturation 280
- 16.3.3 Seed Germination 281
- 16.3.4 The Level and Activities of Various HormonesChange Dramatically During SeedDevelopment 283
- 16.3.5 Many Seeds Have Additional Requirements for Germination 284

16.4 From Embryo to Adult 285

xiv Contents

17.5.2 Phospholipid-Based Signaling 300

16.5	Senescence and Programmed Cell Death are the Final Stages of Development 286 Summary 287 Chapter Review 287 Further Reading 288	17.6	17.5.3 Calcium-Based Signaling 301 17.5.4 Transcriptional-Based Signaling 303 There is Extensive Crosstalk Among Signal Pathways 303 Summary 304
Box	16.1 • Development in a Mutant Weed 282	Box	Chapter Review 304 Further Reading 304 17.1 • Cytoskeleton 295
Chap	oter 17 • Growth and Development of Cells 289		17.2 • Ubiquitin and Proteasomes—Cleaning up Unwanted Proteins 302
17.1	Growth of Plant Cells is Complicated by the		
	Presence of a Cell Wall 289	Char	oter 18 • Hormones I: Auxins 305
	17.1.1 The Primary Cell Wall is a Network of Cellulose	-	
	Microfibrils and Cross-Linking	18.1	The Hormone Concept in Plants 305
	Glycans 289 17.1.2 The Cellulose–Glycan Lattice is Embedded in a	18.2	Auxin is Distributed Throughout the
	Matrix of Pectin and Protein 290	18.3	Plant 306 The Drive and Associate Dlause in Indels 2 Appetie
	17.1.3 Cellulose Microfibrils are Assembled at the	16.3	The Principal Auxin in Plants is Indole-3-Acetic Acid (IAA) 307
	Plasma Membrane as they are Extruded into the Cell Wall 292	18.4	IAA is Synthesized from the Amino Acid l-Tryptophan 309
17.2	Cell Division 292	18.5	Some Plants do not Require Tryptophan for IAA
	17.2.1 The Cell Cycle 292		Biosynthesis 310
	17.2.2 Cytokinesis 293	18.6	IAA may be Stored as Inactive
	17.2.3 Plasmodesmata are Cytoplasmic Channels that		Conjugates 310
	Extend Through the Wall to Connect the Protoplasts of Adjacent Cells 294	18.7	IAA is Deactivated by Oxidation and Conjugation with Amino Acids 311
17.3	Cell Walls and Cell Growth 294	18.8	Auxin is Involved in Virtually Every Stage of
	17.3.1 Cell Growth is Driven by Water Uptake andLimited by the Strength and Rigidity of the CellWall 296		Plant Development 311 18.8.1 The Principal Test for Auxins is the Stimulation of Cell Enlargement in Excised
	17.3.2 Extension of the Cell Wall Requires		Tissues 311
	Wall-Loosening Events that Enable		18.8.2 Auxin Regulates Vascular
	Load-Bearing Elements in the Wall to Yield to		Differentiation 311
	Turgor Pressure 296		18.8.3 Auxin Controls the Growth of Axillary
	17.3.3 Wall Loosening and Cell Expansion is Stimulated by Low Ph and Expansins 297	10.0	Buds 313
	17.3.4 In Maturing Cells, a Secondary Cell Wall is	18.9	The Acid-Growth Hypothesis Explains Auxin Control of Cell Enlargement 314
	Deposited on the Inside of the Primary Wall 298	18.10	Maintenance of Auxin-Induced Growth and Other Auxin Effects Requires Gene
17.4	A Continuous Stream of Signals Provides		Activation 316
	Information that Plant Cells Use to Modify Development 298	18.11	Many Aspects of Plant Development are Linked to the Polar Transport of Auxin 317
	17.4.1 Signal Perception and Transduction 299		Summary 320
	17.4.2 The G-Protein System is a Ubiquitous Receptor		Chapter Review 321
	System 299		Further Reading 321
17.5	Signal Transduction Includes a Diverse Array of	Dor '	, and the second
	Second Messengers 300	BOX .	18.1 • Discovering Auxin 307
	17.5.1 Protein Kinase-Based Signaling 300		

Box 18.2 • Commercial Applications of Auxins 314

Contents

21.1.7 ABA Perception and Signal Transduction 359

Chap	oter 19 • Hormones II: Gibberellins 323	20.2	Cytokinins are Synthesized Primarily in the Root and Translocated in the Xylem 341
19.1	There are a Large Number of Gibberellins 323	20.3	Cytokinins are Required for Cell Proliferation 343
19.2	There are Three Principal Sites for Gibberellin		20.3.1 Cytokinins Regulate Progression through the Cell Cycle 343
19.3	Biosynthesis 324 Gibberellins are Terpenes, Sharing a Core Pathway with Several Other Hormones and a Wide Range of Secondary Products 325		20.3.2 The Ratio of Cytokinin to Auxin Controls Root and Shoot Initiation in Callus Tissues and the Growth of Axillary Buds 344
19.4	Gibberellins are Synthesized from Geranylgeranyl Pyrophosphate (GGPP) 327		20.3.3 Crown Gall Tumors are Genetically Engineered to Overproduce Cytokinin and Auxin 345
19.5	Gibberellins are Deactivated by 2β-Hydroxylation 329		20.3.4 Cytokinins Delay Senescence 34620.3.5 Cytokinins Have an Important Role in Maintaining the Shoot Meristem 347
19.6	Growth Retardants Block the Synthesis of Gibberellins 329		20.3.6 Cytokinin Levels in the Shoot Apical Meristem Are Regulated by Master Control
19.7	Gibberellin Transport is Poorly Understood 330	20.4	Genes 348 Cytokinin Receptor and Signaling 350
19.8	Gibberellins Affect Many Aspects of Plant Growth and Development 330		20.4.1 The Cytokinin Receptor is a Membrane-Based Histidine Kinase 350
	19.8.1 Gibberellins Stimulate Hyper-elongation of Intact Stems, Especially in Dwarf and Rosette Plants 330		20.4.2 The Cytokinin Signaling Chain Involves a Multistep Transfer of Phosphoryl Groups to Response Regulators 351
	19.8.2 Gibberellins Stimulate Mobilization of Nutrient		Summary 353
	Reserves During Germination of Cereal Grains 332		Chapter Review 353
10.0			Further Reading 354
19.9	Gibberellins Act by Regulating Gene Expression 333	Box	20.1 • The Discovery of Cytokinins 341
	Summary 336	Roy	20.2 • Tissue Culture has Made Possible
	Chapter Review 336 Further Reading 337	Вох	Large-Scale Cloning of Plants by Micropropagation 345
Box	19.1 • Discovery of Gibberellins 325	Char	oter 21 • Hormones IV: Abscisic Acid,
_		Citaj	Ethylene, and
Box	19.2 • Commercial Applications of Gibberellins 330		Brassinosteroids 355
		21.1	Abscisic Acid 355
Box	19.3 • Della Proteins and the Green Revolution 335		21.1.1 Abscisic Acid is Synthesized from a Carotenoid Precursor 355
			21.1.2 Abscisic Acid is Degraded to Phaseic Acid by Oxidation 357
Chaj	pter 20 • Hormones III: Cytokinins 339		21.1.3 Abscisic Acid is Synthesized in Mesophyll Cells,Guard Cells, and Vascular Tissue 357
20.1	Cytokinins are Adenine Derivatives 339		21.1.4 Abscisic Acid Regulates Embryo Maturation and
	20.1.1 Cytokinin Biosynthesis Begins with the		Seed Germination 358
	Condensation of an Isopentenyl Group with the		21.1.5 Abscisic Acid Mediates Response to Water Stress 358
	Amino Group of Adenosine Monophosphate 339		21.1.6 Other Abscisic Acid Responses 359
	Transpiropine 27/		

20.1.2 Cytokinins may be Deactivated by Conjugation

or Oxidation 340

xvi Contents

21.2	Ethylene 362 21.2.1 Ethylene is Synthesized from the Amino Acid Methionine 362 21.2.2 Excess Ethylene is Subject to Oxidation 364 21.2.3 The Study of Ethylene Presents a Unique Set of Problems 364 21.2.4 Ethylene Affects Many Aspects of Vegetative Development 364 21.2.5 Ethylene Receptors and Signaling 365	22.4	Phytochrome and Cryptochrome Mediate Numerous Developmental Responses 379 22.4.1 Seed Germination 379 22.4.2 De-Etiolation 380 22.4.3 Shade Avoidance 381 22.4.4 Detecting End-of-day Signals 381 22.4.5 Control of Anthocyanin Biosynthesis 382 22.4.6 Rapid Phytochrome Responses 382 22.4.7 PhyA may Function to Detect the Presence of Light 383
21.3	Brassinosteroids 367 21.3.1 Brassinosteroids are Polyhydroxylated Sterols Derived from the Triterpene Squalene 367 21.3.2 Several Routes for Deactivation of Brassinosteroids have been Identified 369 21.3.3 Brassinolide receptors and Signaling 369 Summary 369 Chapter Review 370 Further Reading 370	22.5 22.6 22.7	Chemistry and Mode of Action of Phytochrome and Cryptochrome 383 22.5.1 Phytochrome is a Phycobiliprotein 383 22.5.2 Phytochrome Signal Transduction 384 22.5.3 Cryptochrome Structure is Similar to DNA Repair Enzymes 386 22.5.4 Cryptochrome Signal Transduction 386 Some Plant Responses are Regulated by UV-B Light 387 De-Etiolation in Arabidopsis: A Case Study in Photoreceptor Interactions 387
Box Box	 21.1 • The Discovery of Abscisic Acid 356 21.2 • The Discovery of Ethylene 363 21.3 • Mitogenactivated Protein Kinase: A Widespread Mechanism for Signal Transduction 366 oter 22 • Photomorphogenesis: 		Summary 388 Chapter Review 389 Further Reading 389 22.1 • Historical Perspectives—The Discovery of Phytochrome 375 oter 23 • Tropisms and Nastic Movements: Orienting Plants
	Responding to Light 373		in Space 391
	- 0 0	23.1	•
22.1 22.2 22.3	Photomorphogenesis is Initiated by Photoreceptors 373 Phytochromes: Responding to Red and Far-Red Light 374 22.2.1 Photoreversibility is the Hallmark of Phytochrome Action 376 22.2.2 Conversion of Pr to Pfr in Etiolated Seedlings Leads to a Loss of Both Pfr and Total Phytochrome 377 22.2.3 Light Establishes a State of Dynamic Photoequilibrium Between Pr and Pfr 378 22.2.4 Phytochrome Responses can be Grouped According to their Fluence Requirements 378 Cryptochrome: Responding to Blue and UV-A	23.1	Phototropism: Reaching for the Sun 392 23.1.1 Phototropism is a Response to a Light Gradient 392 23.1.2 Phototropism is a Blue-Light Response 393 23.1.3 Phototropism Orients a Plant for Optimal Photosynthesis 393 23.1.4 Fluence Response Curves Illustrate the Complexity of Phototropic Responses 394 23.1.5 The Phototropic Response is Attributed to a Lateral Redistribution of Diffusible Auxin 395 23.1.6 Phototropism and Related Responses are Regulated by a Family of Blue-Sensitive Flavoproteins 396

xvii Contents

	23.1.8 Phototropin Activity and Signal Chain 397	24.2.2 Light Resets the Biological Clock on a Daily Basis 425	
	23.1.9 Phototropism in Green Plants is Not Well	24.2.3 The Circadian Clock is	
	Understood 398	Temperature-Compensated 426	
23.2	Gravitropism 398	24.2.4 The Circadian Clock is a Significant Compone	ent
	23.2.1 Gravitropism is More than Simply Up and	in Photoperiodic Time	
	Down 399	Measurement 427	
	23.2.2 The Gravitational Stimulus is the Product of	24.2.5 Daylength Measurement Involves an Interaction	n
	Intensity and Time 399	Between an External Light Signal and a	
	23.2.3 Root Gravitropism Occurs in Four	Circadian Rhythm 428	
	Phases 401	24.2.6 The Circadian Clock is a Negative Feedback	
23.3	Nastic Movements 405	Loop 429	
	23.3.1 Nyctinastic Movements are Rhythmic	24.3 Photoperiodism in Nature 430	
	Movements Involving Reversible Turgor	Summary 431	
	Changes 406	Chapter Review 432	
	23.3.2 Nyctinastic Movements are due to Ion Fluxes	Further Reading 432	
	and Resulting Osmotic Responses in Specialized	D and The land	
	Motor Cells 407	Box 24.1 • Historical Perspectives: The	
	23.3.3 Seismonasty is a Response to Mechanical Stimulation 409	Discovery of Photoperiodism 414	
	Summary 410	Box 24.2 • Historical Perspectives: The	
	Chapter Review 411	Biological Clock 422	
	Further Reading 411		
вох	23.1 • Methods in the Study of Gravitropism 400	Chapter 25 • Flowering and Fruit Development 433	
Chaj	pter 24 • Measuring Time: Controlling Development by Photoperiod	25.1 Flower Initiation and Development Involves the Sequential Action of Three Sets of Genes 433	;
	and Endogenous Clocks 413	25.1.1 Flowering-Time Genes Influence the Duration	1
241	TN	of Vegetative Growth 434	
24.1	Photoperiodism 414	25.1.2 Floral-Identity Genes and Organ-Identity Ger	es
	24.1.1 Photoperiodic Responses may be Characterized	Overlap in Time and Function 436	
	by a Variety of Response Types 415	25.2 Temperature can Alter the Flowering Response	;
	24.1.2 Critical Daylength Defines Short-Day and	to Photoperiod 437	
	Long-Day Responses 415 24.1.3 Plants Actually Measure the Length of the Dark	25.2.1 Vernalization Occurs most Commonly in Winter Annuals and Biennials 438	
	Period 417	25.2.2 The Effective Temperature for Vernalization i	
	24.1.4 Phytochrome and Cryptochrome are the	Variable 439	5
	Photoreceptors for Photoperiodism 418	25.2.3 The Vernalization Treatment is Perceived by t	ha
	24.1.5 The Photoperiodic Signal is Perceived by the	Shoot Apex 440	IIC
	Leaves 419	25.2.4 The Vernalized State is	
	24.1.6 Control of Flowering by Photo-	Transmissible 440	
	period Requires a Transmissible	25.2.5 Gibberellin and Vernalization Operate through	a
	Signal 420	Independent Genetic Pathways 440	-
	24.1.7 Photoperiodism Normally Requires a Period of	25.2.6 Threee Genes Determine the Vernalization	
	High Fluence Light Before or After the Dark	Requirement in Cereals 441	
	Period 421	25.3 Fruit Set and Development is Regulated by	
24.2	The Biological Clock 423	Hormones 442	
	24.2.1 Clock-Driven Rhythms Persist Under Constant	25.3.1 The Development of Fleshy Fruits can be	
	Conditions 423	Divided into Five Phases 442	

xviii Contents

	25.3.2 Fruit Set is Triggered by Auxin 442		27.3.3 Cyanogenic Glycosides are A Natural Source of
	25.3.3 Ripening is Triggered by Ethylene in		Hydrogen Cyanide 466
	Climacteric Fruits 444		27.3.4 Glucosinolates are Sulfur-Containing Precursors to Mustard Oils 466
	Summary 445	27.4	
	Chapter Review 446	27.4	Phenylpropanoids 467
	Further Reading 446		27.4.1 Shikimic Acid is a Key Intermediate in the
Box	25.1 • Ethylene: It's a Gas! 445		Synthesis of Both Aromatic Amino Acids and Phenylpropanoids 468
Cham	oton 26 A Tomorous Dloud		27.4.2 The Simplest Phenolic Molecules are Essentially
Chap	oter 26 • Temperature: Plant Development and		Deaminated Versions of the Corresponding Amino Acids 468
	Distribution 447		27.4.3 Coumarins and Coumarin Derivatives Function
	Distribution 117		as Anticoagulants 468
26.1	Temperature in the Plant		27.4.4 Lignin is a Major Structural Component of
	Environment 447		Secondary Cell Walls 470
26.2	Bud Dormancy 449		27.4.5 Flavonoids and Stilbenes have Parallel
	26.2.1 Bud Dormancy is Induced by		Biosynthetic Pathways 471
	Photoperiod 450		27.4.6 Tannins Denature Proteins and Add an
	26.2.2 A Period of Low Temperature is Required to		Astringent Taste to Foods 472
	Break Bud Dormancy 451	27.5	Secondary Metabolites are Active Against Insects
26.3	Seed Dormancy 451		and Disease 474
	26.3.1 Numerous Factors Influence Seed		27.5.1 Some Terpenes and Isoflavones have Insecticidal
	Dormancy 451		and Anti-Microbial Activity 474
	26.3.2 Temperature has a Significant Impactl on Seed		27.5.2 Recognizing Potential Pathogens 475
26.4	Dormancy 453		27.5.3 Salicylic Acid, a Shikimic Acid Derivative,
20.4	Thermoperiodism is a Response to Alternating Temperature 454		Triggers Systemic Acquired
26.5	Temperature Influences Plant		Resistance 475
20.3	Distribution 454	27.6	Jasmonates are Linked to Ubiquitin-Related
	Summary 457	25.5	Protein Degradation 476
	Chapter Review 457	27.7	Alkaloids 476
	Further Reading 457		27.7.1 Alkaloids are a Large Family of Chemically Unrelated Molecules 476
Box :	26.1 • Bulbs and Corms 450		27.7.2 Alkaloids are Noted Primarily for their Pharmacological Properties and Medical
Chan	oter 27 • Secondary Metabolites 459		Applications 476
Citap	ice 27 - Secondary Metabolites 439		27.7.3 Like Many Other Secondary Metabolites,
27.1	Secondary Metabolites: A.K.A Natural		Alkaloids Serve as Preformed Chemical Defense
	Products 459		Molecules 479
27.2	Terpenes 460		Summary 479
	27.2.1 The Terpenes are a Chemically and Functionally		Chapter Review 480
	Diverse Group of Molecules 460		Further Reading 480
	27.2.2 Terpenes are Constituents of Essential		
	Oils 460	Appe	endix • Building Blocks: Lipids, Proteins,
	27.2.3 Steroids and Sterols are Tetracyclic Triterpenoids 462	•	and Carbohydrates 481
	27.2.4 Polyterpenes Include the Carotenoid Pigments	I.1	Lipids 481
	and Natural Rubber 462	I.2	Proteins 483
27.3	Glycosides 463	I.3	Carbohydrates 485
	27.3.1 Saponins are Terpene Glycosides with		I.3.1 Monosaccharides 485
	Detergent Properties 464		I.3.2 Polysaccharides 486
	27.3.2 Cardiac Glycosides are Highly Toxic Steroid		101
	Glycosides 465	Index	x/Glossary 489