Ductile Design of Steel Structures

Michel Bruneau, Ph.D., P.Eng. Chia-Ming Uang, Ph.D. Rafael Sabelli, S.E.

Second Edition

New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto

Contents

	Prefac	e	••••••	xvi
1	Introd Refere	l uction nces		1 6
2	Struct	ural Stee	1	7
	2.1	Introdu		7
	2.2		on Properties of Steel Materials	8
		2.2.1	Engineering Stress-Strain	_
			Curve	8
		2.2.2		
			Stress-Strain Curve	10
		2.2.3		
			and Notch-Toughness	15
		2.2.4	Strain Rate Effect on Tensile and	
			Yield Strengths	22
		2.2.5	Probable Yield Strength	22
	2.3	Plasticity	y, Hysteresis, Bauschinger Effects	29
	2.4		rgical Process of Yielding,	
		Slip Pla		31
	2.5		ess in Welded Sections	35
		2.5.1	Metallurgical Transformations	
			During Welding, Heat-Affected	
		0.50	Zone, Preheating	35
		2.5.2	Hydrogen Embrittlement	37
		2.5.3	±	40
		2.5.4 2.5.5	Flame Cutting	41
		2.5.5	Weld Restraints	41
		2.5.7	Lamellar Tearing	44 47
		2.5.8	Fracture Mechanics	49
		2.5.9	Partial Penetration Welds	50
		2.5.10	K-Area Fractures	50
		2.5.11	Strain Aging	54
		2.5.12	Stress Corrosion	55
•		2.5.13		57
		2.5.14	Ductility of Corroded Steel	60
	2.6		cle versus High-Cycle Fatigue	62
		2.6.1	High-Cycle Fatigue	62
		2.6.2	Low-Cycle Fatigue	62
			- 0	

vi Contents

	2.7		I Models	7(
		2.7.1	Rigid Plastic Model	70
		2.7.2	Elasto-Plastic Models	70
		2.7.3	Power, Ramberg-Osgood, and	
			Menegotto-Pinto Functions	72
		2.7.4	Smooth Hysteretic Models	80
	2.8	Advant	ages of Plastic Material Behavior	94
	2.9		dy Problems	100
	Refere			104
3	Plastic	c Behavio	or at the Cross-Section Level	111
	3.1		exural Yielding	111
		3.1.1	Doubly Symmetric Sections	112
		3.1.2	Sections Having a Single Axis of	
			Symmetry	117
		3.1.3	Impact of Some Factors on Inelastic	
			Flexural Behavior	120
		3.1.4		127
	3.2		ed Flexural and Axial Loading	129
	J.2	3.2.1	Rectangular Cross-Section	132
		3.2.2		101
		0.2.2	Bending	132
		3.2.3	Wide-Flange Sections: Weak-Axis	102
		0.2.0	n 1:	136
		3.2.4	Moment-Curvature Relationships	137
	3.3		ed Flexural and Shear Loading	137
	3.4	Combin	ed Flexural, Axial, and	137
	0.1		oading	142
	3.5	Pura Pla	stic Torsion: Sand-Heap Analogy	145
	0.0	3.5.1	Review of Important Elastic	143
		0.0.1	Analysis Possilts	145
		3.5.2	Analysis Results	145
	3.6		Sand-Heap Analogyed Flexure and Torsion	146
	3.7			148
	3.7	Diaxiai r	Elexure	150
			General Principles	150
	2.0	3.7.2	Fiber Models	158
	3.8	Compos	ite Sections	160
	3.9		ly Problems	163
	Refere		•••••	173
4		pts of Pla	stic Analysis	175
	4.1	Introduc	tion to Simple Plastic Analysis	1 <i>7</i> 5
	4.2	Simple I	Plastic Analysis Methods	178
			Event-to-Event Calculation	
			(Step-by-Step Method)	178

		4.2.2	Equilibrium Method	
			(Statical Method)	181
		4.2.3	Kinematic Method	
			(Virtual-Work Method)	186
	4.3	Theoren	ns of Simple Plastic Analysis	191
		4.3.1	Upper Bound Theorem	192
		4.3.2	Lower Bound Theorem	192
		4.3.3	Uniqueness Theorem	192
	4.4		tion of the Kinematic Method	193
		4.4.1	Basic Mechanism Types	193
		4.4.2	Combined Mechanism	195
		4.4.3	Mechanism Analysis by	100
		1.1.0	Center of Rotation	202
		4.4.4	Distributed Loads	207
	4.5	20 20 2	own Theorem	207
	1.0		ion Stability)	215
	4.6	Yield Li		222
	4.0		General Framework	222
		4.6.2		229
		4.6.3	Plastic Mechanisms of	227
		4.0.3		235
	4.7	Calf Cha	Local Bucklingdy Problems	238
	Refere			230
	Keiere	nces	•••••	24/
5	System	natic Mot	thods of Plastic Analysis	249
3	5,1		of Basic Mechanisms	249
	5.2		Combination of Mechanisms	253
	5.2	5.2.1	Example: One-Bay, One-Story	200
		J.Z.1	Frame	253
		5.2.2	Example: Two-Story Frame with	255
		3.2.2		256
	F 2	Mathad	Overhanging Bay	259
	5.3		of Inequalities	266
	5.4		dy Problems	272
	Refere	nces		2/2
6	A nnli	cations of	f Plastic Analysis	273
6				274
	6.1		t Redistribution Design Methods	274
		6.1.1	Statical Method of Design	274
	()	6.1.2	Autostress Design Method	
	6.2		y Design	279
			Concepts	279
		6.2.2		281
		6.2.3		284
			Hinging	/×Δ

	6.3	Push-C	ver Analysis	285
		6.3.1	Monotonic Push-Over Analysis	287
		6.3.2		294
	6.4	Seismic	Design Using Plastic Analysis	295
	6.5		versus Local Ductility Demands	296
		6.5.1	Displacement Ductility versus	
			Curvature Ductility	296
		6.5.2		
			Structural Element in Series	300
	6.6	Displac	ement Compatibility of	
				302
	6.7	Self-Stu	ctile Systemsdy Problems	303
	Refere	nces .	• • • • • • • • • • • • • • • • • • • •	307
-	D21 J2	C- 1-	Catanata Dani - Distract	200
7	7.1	ing Code	Seismic Design Philosophy	309
	7.1 7.2	Mood fo	ction	309
	7.2	7.2.1	or Ductility in Seismic Design	309
		7.2.1	Elastic Response and Response	210
		7.2.2	Spectrum	310
		7.2.2	r	210
	7.3	Colland	Reductione Mechanism versus	312
	7.5		echanism	215
	7.4		Earthquake	315 316
	7. 1 7.5	Equival.	ent Lateral Force Procedure	318
	7.6	Physica	l Meaning of Seismic	219
	7.0		nance Factors	320
	7.7		y Design	320 322
	, .,	771	Global-Tevel Approach	323
		7.7.1	Global-Level Approach Local-Level Approach	324
	7.8	Perform	ance-Based Seismic Design	324
		Framew	ork	327
		7.8.1		327
		7.8.2	USA: ASCE 7	328
		7.8.3		329
		7.8.4	Japan: BSL	331
		7.8.5		333
		7.8.6	Next-Generation Performance-Based	555
			Seismic Design	335
	7.9	Historica	al Perspective of Seismic Codes	336
	Referer		·····	341
_				0 1 1
8	Design	of Duct	ile Moment-Resisting Frames	345
	8.1	Introduc	tion	345
		8.1.1	Historical Developments	346

	8.1.2	General Behavior and	
		Plastic Mechanism	34
	8.1.3	Design Philosophy	34
8.2	Basic R	esponse of Ductile Moment-Resisting	
	Frames	to Lateral Loads	348
	8.2.1	Internal Forces During Seismic	
		Response	348
	8.2.2	Plastic Rotation Demands	350
	8.2.3	Lateral Bracing and	
		Local Buckling	351
8.3	Ductile	Moment-Frame Column Design	352
	8.3.1	Axial Forces in Columns	352
	8.3.2	Considerations for	
		Column Splices	352
	8.3.3	Strong-Column/Weak-Beam	
		Philosophy	353
	8.3.4	Effect of Axial Forces on	
		Column Ductility	357
8.4	Panel Z		358
	8.4.1	Flange Distortion and Column Web	
		Yielding/Crippling Prevention	358
	8.4.2	Forces on Panel Zones	362
	8.4.3	Behavior of Panel Zones	364
	8.4.4	Modeling of Panel Zone Behavior	370
	8.4.5	Design of Panel Zone	374
8.5	Beam-to	o-Column Connections	377
	8.5.1	Knowledge and Practice Prior	
		to the 1994 Northridge	
		Earthquake	377
	8.5.2	Damage During the Northridge	
		Earthquake	389
	8.5.3	Causes for Failures	401
	8.5.4	Reexamination of Pre-Northridge	
		Practice	410
	8.5.5	Post-Northridge Beam-to-Column	
		Connections Design Strategies for	
		New Buildings—Initial Concepts	412
	8.5.6	Post-Northridge Beam-to-Column	
		Prequalified Connections	432
	8.5.7	International Relevance	438
	8.5.8	Semi-Rigid (Partially Restrained)	
		Bolted Connections	446
8.6	Design o	of a Ductile Moment Frame	450
	8.6.1		450

x Contents

		8.6.2	welding and Quality Control	
			Issues	451
		8.6.3	Generic Design Procedure	452
	8.7	P-∆ Stal	oility of Moment Resisting	
				458
		8.7.1	Fundamental Concept and	
			Parameters	459
		8.7.2	Impact on Hysteretic Behavior	461
		8.7.3	Design Requirements	463
	8.8		Example	464
		8.8.1	Building Description and	
			Loading	465
		8.8.2	Global Requirements	465
		8.8.3	Basis of Design	466
		8.8.4	Iterative Analysis and	100
		0.0.1	Proportioning	467
		8.8.5	Member Checks	470
		8.8.6	WUF-W Connection Design	472
		8.8.7	Detailing	483
		8.8.8	Bracing	483
		8.8.9	Completion of Design	486
	8.9		dy Problems	486
	Refere			490
				420
9	Desig	n of Duci	tile Concentrically Braced	
	Frame			499
	9.1	Introdu	ction	499
		9.1.1	Historical Developments	499
		9.1.2	General Behavior and Plastic	
			Mechanism	502
		9.1.3	Design Philosophy	503
	9.2	Hystere	tic Behavior of Single Braces	506
		9.2.1	Brace Physical Inelastic Cyclic	
			Behavior	506
		9.2.2	Brace Slenderness	508
		9.2.3	Compression Strength Degradation	
			of Brace Under Repeated	
			Loading	516
		9.2.4	Brace Compression Overstrength	010
		J. . 1	at First Buckling	521
		9.2.5	Evolution of Codified Strength and	921
		ر. <u>م</u> ــــ در	Slenderness Limits	523
		9.2.6		523
		9.2.7		
		9.2.7	Low-Cycle Fatigue Models Models of Single Brace Behavior	529
		フ.∠. O	iviouels of offigie drace behavior	535

	9.3	Hystere	etic Behavior and Design of	
		Concen	trically Braced Frames	536
		9.3.1	System Configuration and	001
			General Issues	536
		9.3.2	Brace Design	542
		9.3.3	Beam Design	547
		9.3.4	Column Design	552
		9.3.5	Connection Design	556
		9.3.6	Other Issues	560
	9.4		oncentric Braced-Frame Systems	
		9.4.1	Special Truss Moment Frames	564
		7.1.1		F. (
		9.4.2	(STMF)	564
	9.5		Zipper Frames	565
	9.5	9.5.1	Example	565
		9.3.1	Building Description and	
		0 = 0	Loading	566
		9.5.2	Global Requirements	567
		9.5.3	Basis of Design	568
		9.5.4	Preliminary Brace Sizing	570
		9.5.5	Plastic Mechanism Analysis	570
		9.5.6	Capacity Design of Beam	571
		9.5.7	Capacity Design of Column	573
		9.5.8	Iterative Analysis and	
			Proportioning	575
		9.5.9	Connection Design	575
		9.5.10	Completion of Design	576
		9.5.11	Additional Consideration: Gravity	
			Bias in Seismic Systems	576
	9.6	Self-Stu	dy Problems	579
	Refere		***************************************	584
10			ile Eccentrically Braced Frames	591
	10.1	Introduc		591
		10.1.1	T	591
		10.1.2	General Behavior and Plastic	
			Mechanism	592
		10.1.3	Design Philosophy	593
	10.2	Link Bel	navior	594
		10.2.1	Stiffened and Unstiffened Links	594
		10.2.2	Critical Length for Shear	
			Yielding	595
		10.2.3	Classifications of Links and Link	-,,
			Deformation Capacity	597
		10.2.4	Link Transverse Stiffener	598
		10.2.1		601

		10.2.6	Effect of Concrete Slab	602
		10.2.7		602
		10.2.8	Qualification Test and Loading	
			Protocol Effect	603
	10.3	EBF Late	eral Stiffness and Strength	604
		10.3.1	Elastic Stiffness	604
		10.3.2	Link Required Rotation	604
		10.3.3	Plastic Analysis and Ultimate	
			Frame Strength	606
	10.4	Ductility	y Design	609
		10.4.1	Sizing of Links	609
		10.4.2	Link Detailing	609
		10.4.3	Lateral Bracing of Link	614
	10.5	Capacity	Design of Other Structural	
		Compor	nents	615
		10.5.1	General	615
		10.5.2	Internal Force Distribution	616
		10.5.3	Diagonal Braces	618
		10.5.4	Beams Outside of Link	619
		10.5.5	Columns	620
		10.5.6	Connections	620
	10.6	Design E	<u> </u>	625
		10.6.1	Building Description and	
			Loading	625
		10.6.2	Global Requirements	626
		10.6.3	Basis of Design	627
		10.6.4	Sizing of Links	628
		10.6.5	Final Link Design Check	638
		10.6.6	Link Rotation	640
		10.6.7	Link Detailing	641
		10.6.8	Completion of Design	642
	10.7		ly Problems	643
	Refere	nces	• • • • • • • • • • • • • • • • • • • •	646
11	Desig	n of Ducti	le Buckling-Restrained	
	_	l Frames	·····	651
	11.1	Introduct		651
	11.2	Buckling	-Restrained Braced Frames versus	001
			ional Frames	651
	11.3		and Components of	001
			-Restrained Brace	654
	11.4		nent of BRBs	656
	11.5		ile Failure Modes	661
			Steel Casing	661
		11.5.2	Brace Connection	662

		11.5.3	Frame Distortion Effect on	
			Gusset Connection	666
	11.6	BRBF Co	onfiguration	667
	11.7	Design o	of Buckling-Restrained Braces	669
		11.7.1		669
		11.7.2		669
		11.7.3		670
	11.8	Capacity	Design of BRBF	671
			AISC Testing Requirements	672
		11.8.2	Brace Casing	673
		11.8.3		673
		11.8.4		674
	11.9	Nonline	ar Modeling	674
	11.10		Example	675
		11.10.1	Building Description and	
			Loading	675
		11.10.2	Global Requirements	675
		11.10.3		675
		11.10.4	Iterative Analysis and	0.0
			Proportioning	678
		11.10.5	Brace Validation and Testing	684
		11.10.6	Completion of Design	686
	11.11		dy Problem	686
	Refere	nces		687
12	_		ile Steel Plate Shear Walls	689
	12.1	Introduc		689
		12.1.1	General Concepts	689
		12.1.2	Historical Developments	692
	10.0	12.1.3	International Implementations	699
	12.2		r of Steel Plate Shear Walls	703
		12.2.1	General Behavior	703
		12.2.2	Plastic Mechanism	706
		12.2.3	Design Philosophy and Hysteretic	
			Energy Dissipation	710
	12.3		s and Modeling	712
		12.3.1		712
		12.3.2		715
		12.3.3	Demands on HBEs	715
		12.3.4	Demands on VBEs	728
	12.4	Design		736
		12.4.1	Introduction	736
		12.4.2	Web Plate Design	737
		12.4.3	HBE Design	74 1
		12.4.4	VBE Design	750

xiv Contents

		12.4.5	Distribution of Lateral Force	
			Between Frame and Infill	753
		12.4.6	Connection Details	754
		12.4.7	Design of Openings	756
	12.5	Perforat	ed Steel Plate Shear Walls	758
		12.5.1	Special Perforated Steel Plate	
			Shear Walls	758
		12.5.2	Steel Plate Shear Walls with	
			Reinforced Corners Cutouts	763
	12.6	Design I	Example	767
		12.6.1	Building Description and	
			Loading	767
		12.6.2	Global Requirements	767
		12.6.3		769
		12.6.4	0	770
		12.6.5		772
			VBE Design	776
		12.6.7	Drift	778
		12.6.8	HBE Connection Design	779
		12.6.9		779
	12.7		ly Problems	780
	Refere		• • • • • • • • • • • • • • • • • • • •	782
40	0.1			
13	Other		teel Energy Dissipating	
	System			787
	13.1	Structura	al Fuse Concept	787
	13.2	0,	Dissipation Through Steel	
		rielding	T. 1. 0	790
		13.2.1	Early Concepts	790
		13.2.2	Triangular Plates in Flexure	792
		13.2.3	Tapered Shapes	801
	100	13.2.4	C-Shaped and E-Shaped Devices .	803
	13.3	Energy L	Dissipation Through Friction	806
	13.4	Rocking	Systems	818
	13.5	Self-Cent	ering Post-Tensioned Systems	823
	13.6		ve Metallic Materials: Lead,	
	10.57	Shape-M	emory Alloys, and Others	826
	13.7	Validation	n Quantification	827
	Refere	nces	•••••	828
14	Stabili	ty and Rot	ation Capacity of Steel Beams	837
	14.1	Introduct	ion	837
	14.2		stic and Postelastic Buckling	007
		Behavior	·····	840
	14.3		Description of Inelastic Beam	UTU
		Behavior	·····	845

	14.3.1	Beams with Uniform Bending	
		Moment	845
	14.3.2	Beams with Moment Gradient	846
	14.3.3		
		Under Uniform Moment and	
		Moment Gradient	849
14.4	Inelastic	Flange Local Buckling	849
	14.4.1	Modeling Assumptions	849
	14.4.2		
		Plate	851
	14.4.3		
		Rectangular Plate	853
14.5	Web Loc	cal Buckling	859
14.6	Inelastic	Lateral-Torsional Buckling	862
	14.6.1	General	862
	14.6.2	Beam Under Uniform Moment	863
		Beam Under Moment Gradient	868
14.7	Code Co	omparisons	874
14.8	Interacti	on of Beam Buckling Modes	877
14.9	Cyclic B	eam Buckling Behavior	881
14.10		ly Problem	888
Refere	nces		888
Index		•••••	891
			071