Tomasz Komorowski • Claudio Landim • Stefano Olla

Fluctuations in Markov Processes

Time Symmetry and Martingale Approximation

Contents

Part I General Theory

1	A Wa	rming-U	p Example	3
	1.1	Ergodic	Markov Chains	4
	1.2	Almost	Sure Central Limit Theorem for Ergodic Markov	
		Chains		6
	1.3	Central	Limit Theorem for Martingales	9
	1.4	Time-V	ariance in Reversible Markov Chains 1	3
	1.5	Central	Limit Theorem for Reversible Markov Chains 1	7
	1.6	The Spa	ace of Finite Time-Variance Functions	1
		1.6.1	The Space \mathscr{H}_1	1
		1.6.2	The Space \mathcal{H}_{-1}	4
	1.7	Comme	nts and References	8
	Refer	ences		0
2	Cent	ral Limit	Theorems	3
	2.1	Central	Limit Theorem for Continuous Time Martingales 3	6
	2.2	The Spa	aces \mathcal{H}_1 and \mathcal{H}_{-1}	0
	2.3	The Res	solvent Equation	-5
	2.4	Dynkin	's Martingales	.6
	2.5	\mathscr{H}_{-1} Es	stimates of the Time-Variance	.7
	2.6	Central	Limit Theorem for Markov Processes	0
	2.7	Some E	xamples	6
		2.7.1	Reversibility	6
		2.7.2	Spectral Gap	7
		2.7.3	Sector Condition	7
		2.7.4	Graded Sector Condition	9
		2.7.5	Perturbations of Normal Operators	8
	2.8	Invariar	ce Principles in the Multidimensional Case 7	0
		2.8.1	Martingales with Stationary Increments	0
		2.8.2	Additive Functionals of Markov Processes 7	3

	2.9	Comments and References
	Refe	rences
3	Rand	dom Walks in Random Environment
	3.1	Random Walks with Random Conductances
	3.2	Doubly Stochastic Random Walks
	3.3	Cyclic Random Walks
	3.4	Random Walks with Drift in \mathcal{H}_{-1}
		3.4.1 The Corrector Field
		3.4.2 An Elliptic Equation for the Corrector Field 107
		3.4.3 The Energy Identity
	3.5	Random Walks in Mixing Environments
	3.6	Doubly Stochastic Random Walks in Dimension $d = 1$
	3.7	Symmetric Random Walks
	3.8	Comments and References 133
	Refe	rences 134
4	Bour	ids and Variational Principles for the Asymptotic Variance 137
	4.1	Quadratic Functional of the Resolvent
	4.2	Bounds and Variational Formulas for the Variance
	4.3	Variational Principles in the Graded Sector Context
	4.4	Estimates of the Variance
	4.5	Comments and References
	Refe	rences
Pa	rt II	Simple Exclusion Processes
5	The	Simple Exclusion Process
	5.1	Exclusion Processes
	5.2	Central Limit Theorems for Additive Functionals 161
	53	The Mean Zero Asymmetric Case
	54	Duality 171
	5.5	The Asymmetric Core $\alpha = 1/2$ 179
	5.5	The Asymmetric Case, $\alpha = 1/2$
	J.0 5 7	The Asymmetric Case, $\alpha \neq 1/2$
	5.1	
	5.8 D.C	
	Refe	rences
6	Self-	diffusion
	6.1	The Exclusion Process as Seen from a Tagged Particle 200
	6.2	Elementary Martingales
	6.3	The Spaces \mathcal{H}_1 and \mathcal{H}_{-1}
	6.4	Law of Large Numbers
	6.5	Central Limit Theorem 210
	6.6	The Mean Zero Asymmetric Case
	67	Duality 210
	6.9	The Asymmetric Cose in Dimension 1 > 2
	0.8	The Asymmetric Case in Dimension $d \ge 3$

	6.9	The Self-diffusion Matrix	33
	6.10	Comments and References	36
	Refer	ences	39
7	Faui	ibrium Eluctuations of the Dansity Field	4 1
'	7 1	Duality	41 40
	7.1	$\begin{array}{c} \text{Duality} \dots \dots$	78 52
	7.2	The Electron Dissipation Theorem 25	23
	1.5 7 A	The Fluctuation–Dissipation Theorem	57
	7.4	The Second Class Particle	53
	7.5	Estimates on the Operators $\mathfrak{L}_{\theta,s,2}$, $\mathfrak{L}_{\star,a}$ and $\mathfrak{J}_{\star,\pm}$	56
	7.6 D.f	Comments and References	72
	Refer	ences	73
8	Regu	arity of the Asymptotic Variance	75
	8.1	The Resolvent Equation	76
	8.2	The Symmetric Case	79
	8.3	The Mean Zero Case	30
	8.4	The Asymmetric Case in $d > 3$	₹4
	8.5	Regularity of the Diffusion Coefficients 28	27
	8.6	Comments and References	38
	Refer	ences	20
			,,
Pa	rt III	Diffusions in Random Environments	
9	Diffu	sions in Random Environments 29)3
	9.1	Diffusions with Periodic Coefficients	33
	9.2	Remark About the Quasi-neriodic Case	30
	93	Diffusions with Stationary Coefficients)1)1
	2.5	9.3.1 Preliminaries on Stationary Environments 30	12
		9.3.2 Spaces of Smooth Functions 30)A
		9.3.2 Itô Equations with Stationary Coefficients) -)5
	94	Environment Process and Its Properties	גנ דו
	9.4	Martingale Decomposition and Central Limit Theorem 31	10
	9.5	Homogenization of Solutions of Dereholic Derticl Differential	U
	2.0	Foundations of Solutions of Farabolic Farial Differential	12
	2.0	Equations	13
	2.0	Homogenization of Solutions of Parabolic Partial Differential Equations	13
	0.7	Homogenization of Solutions of Parabolic Partial Differential Equations	13 14 16
	9.7	Fromogenization of Solutions of Parabolic Partial Differential Equations	13 14 16
	9.7	Fromogenization of Solutions of Parabolic Partial Differential Equations	13 14 16 17
	9.7	Homogenization of Solutions of Parabolic Partial Differential Equations 31 9.6.1 Random Coefficient Case 31 9.6.2 Periodic Case 31 Proofs of Propositions 9.8 and 9.9 31 9.7.1 Proof of Proposition 9.8 31 9.7.2 Proof of Proposition 9.9 31	13 14 16 17 18
	9.7 9.8	Homogenization of Solutions of Parabolic Partial Differential Equations 31 9.6.1 Random Coefficient Case 31 9.6.2 Periodic Case 31 Proofs of Propositions 9.8 and 9.9 31 9.7.1 Proof of Proposition 9.8 31 9.7.2 Proof of Proposition 9.9 31 One-Dimensional Case 32	13 14 16 17 18 19 21
	9.7 9.8 9.9	Fromogenization of Solutions of Parabolic Partial Differential Equations 31 9.6.1 Random Coefficient Case 31 9.6.2 Periodic Case 31 Proofs of Propositions 9.8 and 9.9 31 9.7.1 Proof of Proposition 9.8 31 9.7.2 Proof of Proposition 9.9 31 One-Dimensional Case 32 Diffusions with Time Dependent Coefficients 32	13 14 16 17 18 19 21 22
	9.7 9.8 9.9	Homogenization of Solutions of Parabolic Partial Differential Equations 31 9.6.1 Random Coefficient Case 31 9.6.2 Periodic Case 31 Proofs of Propositions 9.8 and 9.9 31 9.7.1 Proof of Proposition 9.8 31 9.7.2 Proof of Proposition 9.9 31 One-Dimensional Case 32 Diffusions with Time Dependent Coefficients 32 9.9.1 Space-Time Stationary Environments 32	13 14 16 17 18 19 21 22 22
	9.7 9.8 9.9	Homogenization of Solutions of Parabolic Partial Differential Equations 31 9.6.1 Random Coefficient Case 31 9.6.2 Periodic Case 31 Proofs of Propositions 9.8 and 9.9 31 9.7.1 Proof of Proposition 9.8 31 9.7.2 Proof of Proposition 9.9 31 One-Dimensional Case 32 Diffusions with Time Dependent Coefficients 32 9.9.1 Space-Time Stationary Environments 32 9.9.2 Central Limit Theorem 32	13 14 16 17 18 19 21 22 22 26
	9.7 9.8 9.9 9.10	Homogenization of Solutions of Parabolic Partial DifferentialEquations9.6.1Random Coefficient Case9.6.2Periodic Case9.6.3Proofs of Propositions 9.8 and 9.99.7.1Proof of Proposition 9.89.7.2Proof of Proposition 9.99.7.2Proof of Proposition 9.99.9Diffusions with Time Dependent Coefficients9.9.1Space-Time Stationary Environments9.9.2Central Limit Theorem32Comments and References	13 14 16 17 18 19 21 22 22 26 27

10	Varia	tional Principles for the Limiting Variance	. 331
	10.1	Spaces of Vector Fields	. 331
	10.2	Upper Bound	. 334
	10.3	Lower Bound	. 339
	10.4	Spectral Representation of Homogeneous Fields	341
	10.5	Comments and References	343
	Refer	ences	. 343
11	Diffu	sions with Divergence Free Drifts	. 345
	11.1	Passive Tracer Model	345
	11.2	Properties of the Flow and the Definition of the Stream Matrix	. 345
	11.3	Central Limit Theorem for a Diffusion with Bounded Stream	
		Matrix	. 348
	11.4	Convection Enhanced Diffusions	. 349
	11.5	Time Dependent Flows with Finite Péclet Number	350
	11.6	Proof of Theorem 11.4	351
		11.6.1 Notation	352
		11.6.2 Statements of Some Technical Results	352
		11.6.3 Properties of the Environment Process	353
		11.6.4 Properties of the \mathcal{H}_1 -Norm	355
		11.6.5 Construction of the Corrector Field	357
		11.6.6 Proof of the Energy Identity	363
	11.7	Proofs of the Technical Results	367
		11.7.1 Proof of Proposition 11.6	367
		11.7.2 Proof of Proposition 11.7	367
		11.7.3 Proof of Proposition 11.8	369
		11.7.4 Proof of Proposition 11.9	369
		11.7.5 Ergodic Theorem	370
	11.8	Comments and References	371
	Refere	ences	372
12	Diffus	sions with Gaussian Drifts	375
	12.1	Stationary Gaussian Fields	376
	12.2	Hermite Polynomials and Graded Structure of $L^2(\mathbb{O})$	376
	12.3	Environment Process and Its Properties	377
	12.4	Central Limit Theorem	381
	12.5	Proofs of Technical Results	382
		12.5.1 Proof of Estimate (12.2)	382
		12.5.2 Proofs of Theorem 12.3 and Proposition 12.4	384
	12.6	Superdiffusive Transport in a Flow with Infinite Péclet	507
		Number	387
		12.6.1 Homogeneous, Isotropic Gaussian Flows	387
		12.6.2 Flows with Infinite Péclet Numbers	380
	12.7	Central Limit Theorem for Diffusions in Gaussian and Markovian	507
		Flows	394
	12.8	Markovian Dynamics of the Environment	396

		12.8.1 Hermite Polynomials	396	
		12.8.2 Definition of the Transition Semigroup	397	
		12.8.3 Properties of the Generator	398	
		12.8.4 More General Formulation of the Markov Property of the		
		Environment Process	399	
	12.9	Periodic Approximation of the Flow	400	
	12.10	Environment Process	403	
	12.11	Proof of Part (1) of Theorem 12.13	405	
	12.12	On Superdiffusive Behavior of a Tracer in an Isotropic Flow	409	
	12.13	Proof of Part (2) of Theorem 12.13	413	
	12.14	Proofs of the Results from Sect. 12.8	415	
		12.14.1 Construction of the Semigroup	415	
		12.14.2 Proof of Proposition 12.16	420	
		12.14.3 Proof of Proposition 12.17	420	
	12.15	Proofs of the Results from Sect 12 10	420	
		12.15.1 Proof of Proposition 12.19	422	
		12.15.2. Proof of Proposition 12.19	122	
	12.16	Appendix: Some Auxiliary Results About Gaussian Random	-+2,5	
	12.10	Fields	127	
		12.16.1 Multiple Stochastic Integrals	421	
		12.16.2 Some Properties of Hermite Polynomials	427	
	12.17	Comments and References	430	
	Refere		431	
	101010		455	
13	Ornst	ein–Uhlenbeck Process with a Random Potential	437	
	13.1	Random Diffusion of a Particle with Inertia	437	
	13.2	Proof of the Central Limit Theorem	438	
	13.3	Proof of Proposition 13.2	445	
	13.4	Gaussian Bounds on Transition Probability Densities	446	
	13.5	Comments and References	453	
	Refere	ences	454	
14	Analy	tic Methods in Homogenization Theory	455	
	14.1	<i>G</i> -Convergence of Operators	456	
	14.2	Γ -Convergence of Quadratic Forms	458	
	14.3	G-Convergence of Matrix Valued Functions	460	
	14.4	Application to Homogenization of Diffusions in Random	-100	
		Media	466	
	14.5	Appendix: Ellipticity of the Coefficient Matrix of a Coercive Form	470	
	14.6	Comments and References	471	
	Refere	ences	472	
			12	
Ref	ference	es	475	
Not	Notation			
Suł	Subject Index			