Shigeo Fujikawa · Takeru Yano · Masao Watanabe

Vapor-Liquid Interfaces, Bubbles and Droplets

Fundamentals and Applications

With 74 Figures

Contents

1	Sig	ificanc	e of Molecular and Fluid-Dynamic Approaches		
	to Interface Phenomena				
	1.1	Vapor	-Liquid Interface and Kinetic Boundary Condition (KBC)		
	1.2	Why A	Are Measurements of α_e and α_c So Difficult?		
		1.2.1	Unsteady Nonequilibrium Condensation Induced by Shock		
			Wave Reflection		
		1.2.2	Temporal Transition Phenomenon of Interface		
			Displacement		
		1.2.3	Mechanism of Temporal Transition Phenomenon		
	1.3	Realiz	ation of Nonequilibrium States		
		1.3.1	Another Prerequisition and Shock Wave		
		1.3.2	Previous Studies of Condensation by Shock Wave		
	1.4	Const	itution of This Book		
	Refe	erences			
2	Kin	etic Bo	undary Condition at the Interface		
	2.1		scopic Description of Molecular Systems		
		2.1.1	Equation of Motion		
		2.1.2	Liouville Equation	1	
		2.1.3	Definitions of Macroscopic Variables and Equations		
			in Fluid Dynamics	1	
	2.2	Molec	ular Dynamics Simulation		
		2.2.1	Lennard-Jones Potential and Normalization of Variables		
		2.2.2	Finite Difference Method		
		2.2.3	Example: Vapor–Liquid Equilibrium State	2	
	2.3	Kineti	c Theory of Gases	í	
		2.3.1	Boltzmann Equation	2	
		2.3.2	Boundary Condition for the Boltzmann Equation		
	2.4	Kineti	c Boundary Condition	4	
		2.4.1	Evaporation into Vacuum	4	
		2.4.2	Evaporation Coefficient	4	

		2.4.3	Condensation Coefficient and KBC in Weak Condensation States	52
	2.5	Asvn	nptotic Analysis of Weak Condensation State of Methanol	54
		2.5.1		55
		2.5.2		58
		2.5.3		50
		21010	Region	61
		2.5.4		64
	2.6		ism on Hertz-Knudsen-Langmuir and Schrage Formulas	66
				67
				07
3	Me	thods f	or the Measurement of Evaporation and Condensation	
	Сю	efficient	ts	71
	3.1	Revie	w of α_e , α_c , KBC, and Gaussian–BGK Boltzmann Equation	71
		3.1.1	Definitions of α_e and α_c	71
		3.1.2	Extension of Monatomic Version of KBC	
			to Polyatomic One	72
		3.1.3	KBC Expressed by Net Mass Flux Measured at the	
			Interface	76
		3.1.4	Gaussian–BGK Boltzmann Equation in Moving	
			Coordinate System	77
	3.2		Tube Method for Measurement of Condensation Coefficient .	78
		3.2.1	Principle of Shock Tube Method	78
		3.2.2	Characteristics of Film Condensation at Endwall behind	
			Reflected Shock Wave	80
		3.2.3	Mathematical Modeling of Film Condensation on Shock	
			Tube Endwall	82
		3.2.4	Boundary Condition at Infinity in Vapor	84
		3.2.5	Heat Conduction in Liquid Film and Shock Tube Endwall	84
		3.2.6	Initial Conditions	85
	3.3		Tube	86
		3.3.1	Schematic and Performance of Shock Tube	86
		3.3.2	Effect of Noncondensable Gases on Liquid Film Growth	87
	~ .	3.3.3	Effect of Association of Molecules on Vapor State	88
	3.4	Optica	l Interferometer	89
		3.4.1	Theory of Optical Interferometer	89
		3.4.2	Method of Optical Data Analysis	92
	3.5	Proper	ties of Adsorbed Liquid Film on Optical Glass Surface	93
		3.5.1	Treatment of Optical Glass	93
		3.5.2	Thickness of Temporarily Adsorbed Liquid Film	94
	26	3.5.3	Refractive Index of Initially Adsorbed Liquid Film	95
	3.6	Deduc	tion of Condensation Coefficient.	96
		3.6.1	Typical Output Examples of Energy Reflectance	96
		3.6.2	Time Changes of Liquid Film Thickness	98

	3.6.3	Propagation Process of Shock Waves	100
		Time Changes of Macroscopic Quantities	
		and Condensation Coefficient	101
	3.6.5	Values of α_e and α_c for Water and Methanol	103
3.7	Sound	Resonance Method for Measurement	
	of Eva	poration Coefficient	106
Refe	erences .		108

4	Vapor Pressure, Surface Tension, and Evaporation Coefficient					
			oplets	111		
	4.1		icance of Molecular Dynamics Analysis for Nanodroplets	111		
	4.2		od of MD Simulations	113		
	4.3		utational Method of Pressures	115		
	4.4		brium States of Nanodroplets and Planar Liquid Films	116		
		4.4.1	General Explanation	116		
		4.4.2	Density Distributions	116		
		4.4.3	Pressure Distributions	120		
		4.4.4	Differentiability of Normal Pressure with Respect			
			to Radial Coordinate	123		
		4.4.5	Laplace Equation and Surface Tension	124		
		4.4.6	Kelvin Equation	126		
		4.4.7	Tolman Equation	129		
	4.5	Mass '	Transport Across Nanodroplet Surface	130		
		4.5.1	Problem Statement	130		
		4.5.2	Evaporation and Condensation Coefficients, and Mass	100		
			Transfer Rate	131		
		4.5.3	Vacuum Evaporation Simulations	132		
		4.5.4	Mass Fluxes and Evaporation Coefficient	133		
	Refe			140		
	1001			1 10		
5	Dyn	amics	of Spherical Vapor Bubble	143		
	5.1	Fluid-	dynamic Definition of Interface	143		
	5.2		natics of Interface	145		
		5.2.1	Interface Velocity	145		
		5.2.2	Interface Curvature	145		
		5.2.3	Time Variation of Area of Surface Element	147		
		5.2.4	Surface Divergence	150		
		5.2.5	Equilibrium Thermodynamics of the Interface	152		
	5.3	Gener	al Conservation Equation at Interface	153		
		5.3.1	Conservation Equations in Bulk Fluids	153		
		5.3.2	Conservation Equation in Frame Moving with Interface	154		
		5.3.3	Integration Form of Conservation Equation	155		
		534	Flux Balance on Interface	156		

5.3.4	Flux Balance on Interface	156
5.3.5	Conservation of Mass on Interface	157

	5.3.6	Conservation of Momentum on Interface	159
	5.3.7	Conservation of Energy on Interface	161
5.4	Spheri	ical Vapor Bubble	162
	5.4.1	Governing Equations for Spherical Bubble	163
	5.4.2	Simplification	165
	5.4.3	Boundary Conditions	168
5.5	Practic	cal Description of Bubble Motion	171
	5.5.1	Flow Fields in Liquid	172
	5.5.2	Uniform Pressure in Bubble Interior	172
	5.5.3	Temperature, Pressure, and Velocity Fields	174
	5.5.4	Boundary Conditions of Temperature Field	175
5.6	Tempe	erature Field of Bubble Exterior	176
	5.6.1	Lagrangian Formulation	176
	5.6.2	Transformation of Variables	177
	5.6.3	Laplace Transform of Heat Equation	179
	5.6.4	Inverse Laplace Transform of Heat Equation	181
	5.6.5	Liquid Temperature at Bubble Wall	186
	5.6.6	Gradient of Liquid Temperature at Bubble Wall	188
5.7	Tempe	erature Field of Bubble Interior	189
	5.7.1	Adiabatic Solution	190
	5.7.2	Lagrangian Formulation	191
	5.7.3	Boundary Layer Solution	191
	5.7.4	Solution of Heat Equation	193
	5.7.5	Pressure and Velocity	196
5.8		ure of Mathematical Model	197
5.9		e Expansion with Uniform Interior	199
	5.9.1	Assumptions	199
	5.9.2	Governing Equations and Conditions	200
	5.9.3	Heat Equation for Liquid	202
	5.9.4	Solution of Heat Equation	203
	5.9.5	Asymptotic Growth of Vapor Bubble	206
	5.9.6	Bubble Motion Coupled with Heat Conduction	208
Refe	rences	•••••••••••••••••••••••••••••••••••••••	209
	. .		
		Vectors, Tensors, and Their Notations	211
A.1		; Vector, and Tensor	
A.2	Einste	in Summation Convention	212
Append	ix B	Equations in Fluid Dynamics	215
B.1		ervation Equations.	215
		ervation Equations in Component Forms	218
		• 4	-

Appendix C Supplements to Chapter 5	219
C.1 Generalized Stokes Theorem	219
C.2 Characteristic Time of Heat Conduction	221
C.3 Abel's Integral Equation	223
Index	225