Edited by Andrei K. Yudin

Catalyzed Carbon-Heteroatom Bond Formation

WILEY-VCH Verlag GmbH & Co. KGaA

Contents

Preface XIII List of Contributors XV

1	Synthesis of Saturated Five-Membered Nitrogen Heterocycles via Pd-Catalyzed C–N Bond-Forming Reactions 1
	John P. Wolfe, Joshua D. Neukom, and Duy H. Mai
1.1	Introduction 1
1.2	Pd-Catalyzed Amination of Aryl Halides 1
1.3	Synthesis of Saturated Nitrogen Heterocycles via Alkene, Alkyne, or Allene Aminopalladation Reactions 3
1.3.1	Pd ^{II} -Catalyzed Oxidative Amination of Alkenes 4
1.3.2	Pd-Catalyzed Hydroamination Reactions of Alkenes and Alkynes 6
1.3.3	Pd ⁰ -Catalyzed Carboamination Reactions of Alkenes 8
1.3.4	Pd ¹¹ -Catalyzed Carboamination Reactions of Alkenes 10
1.3.5	Pd-Catalyzed Carboamination Reactions of Alkynes, Allenes,
	and Dienes 10
1.3.6	Vicinal Difunctionalization of Alkenes and Allenes 13
1.4	Synthesis of Nitrogen Heterocycles via Intermediate
	π -Allylpalladium Complexes 16
1.4.1	Reactions Involving Oxidative Addition of Allylic Electrophiles 16
1.4.2	Reactions Involving π -Allylpalladium Intermediates Generated
	via Alkene Carbopalladation 19
1.4.3	Reactions Involving Aminopalladation of 1,3-Dienes 21
1.4.4	Generation of Allylpalladium Intermediates through C-H
	Activation 21
1.5	Synthesis of Nitrogen Heterocycles via Pd-Catalyzed
	1,3-Dipolar Cycloaddition Reactions 22
1.6	Synthesis of Nitrogen Heterocycles via Carbonylative Processes 23
1.6.1	Transformations Involving CO Insertion into Aryl or Alkenyl Pd-Carbon Bonds 23

v

VI Contents

1.6.2	Transformations Involving CO Insertion Into a Pd—Heteroatom
1 ()	Bond 25
1.6.3	Wacker-Type Carbonylative Processes 26
1.7	Summary and Future Outlook 28
	References 28
2	Transition Metal Catalyzed Approaches to Lactones Involving C–O
	Bond Formation 35
2.1	Charles S. Yeung, Peter K. Dornan, and Vy M. Dong
2.1 2.2	Introduction 35 Synthesis of Lostones Involving CO 26
	Synthesis of Lactones Involving CO 36
2.2.1	Carbonylation of C-X Bonds 36
2.2.2	Carbonylation of C–M Bonds 39
2.2.3	Hydrocarbonylation of C=C and C=C Bonds 40 Carbonylation of C=C and C=C Bonds 42
2.2.4	Carbocarbonylation of C=C and C=C Bonds 42
2.2.5	Heterocarbonylation of C=C and C=C Bonds 43
2.2.6	Miscellaneous Lactone Syntheses Involving CO 45
2.3	Synthesis of Lactones via $C=C$ and $C=C$ Addition 46
2.3.1	Hydrocarboxylation of C=C and C=C Bonds 46
2.3.2	Carbo- and Oxy-Carboxylation of C=C and C=C Bonds 50
2.4	Synthesis of Lactones via C=O Hydroacylation 52
2.4.1	Aldehyde Hydroacylation 52
2.4.2	Ketone Hydroacylation 53
2.4.3	[4+2] Annulation 55
2.5	Miscellaneous Syntheses of Lactones 56
2.5.1	Oxidative Lactonization of Diols 56
2.5.2	Reductive Cyclization of Ketoacids and Ketoesters 57
2.5.3	C–H Oxygenation 58
2.5.4	Ring Closure of Benzoic Acids with Dihaloalkanes 59
2.5.5	Baeyer–Villiger Oxidation of Cyclic Ketones 60
2.5.6	Ring Opening of Cyclopropanes with Carboxylic Acids 60
2.5.7	Ring Closure of <i>o</i> -Iodobenzoates with Aldehydes 61
2.5.8	Synthesis of Lactones Involving CO_2 62
2.5.9	Michael Addition of α , β -Unsaturated <i>N</i> -Acylpyrrolidines 62
2.5.10	[2 + 2] Cycloaddition of Ketenes and Aldehydes 63
2.5.11	Tandem Cross-Metathesis/Hydrogenation Route to Lactones 63
2.5.12	Modern Catalytic Variants of Classical Macrolactonizations 64
2.6	Conclusions and Outlook 65
	References 65
3	The Formation of Csp ² –S and Csp ² –Se Bonds by Substitution and
	Addition Reactions Catalyzed by Transition Metal Complexes 69
	Irina P. Beletskaya and Valentine P. Ananikov
3.1	Introduction 69
3.2	Catalytic Cross-Coupling Reactions 70

- 3.2.1 Pd-Catalyzed Transformations 70
- 3.2.2 Ni-Catalyzed Transformations 77
- 3.2.3 Cu-Catalyzed Transformations 79
- 3.2.4 Other Transition Metals as Catalysts 88
- 3.3 Catalytic Addition of RZ–ZR Derivatives to Alkynes (Z≡S, Se) 90
- 3.3.1 Pd and Ni-Catalyzed Formation of Vinyl Chalcogenides 90
- 3.3.2 Ni-Catalyzed Synthesis of Dienes 100
- 3.3.3 Rh-Catalyzed Reactions 101
- 3.3.4 Catalytic Addition of S-X and Se-X Bonds to Alkynes 102
- 3.3.5 Catalytic Addition to Allenes 103
- 3.4 Catalytic Addition of RZ-H Derivatives to Alkynes (Z≡S, Se) 104
- 3.4.1 Pd and Ni-Catalyzed Addition of Thiols and Selenols 104
- 3.4.2 Rh and Pt-Catalyzed Addition of Thiols to Alkynes 109
- 3.4.3 Catalytic Addition of Thiols and Selenols to Allenes 111
- 3.5 Conclusions 112 References 113

4 Palladium Catalysis for Oxidative 1,2-Difunctionalization of Alkenes 119

Béatrice Jacques and Kilian Muñiz

- 4.1 Introduction 119
- 4.2 Palladium-Catalyzed 1,2-Difunctionalization Reactions:
- Halogenation 120
- 4.3 Aminohalogenation Reactions 121
- 4.4 Dialkoxylation 125
- 4.5 Aminoacetoxylation Reactions 127
- 4.6 Diamination Reactions 131
- 4.7 Conclusion 134 References 134

5 Rhodium-Catalyzed C–H Aminations 137

Hélène Lebel 137

- 5.1 Metal Nitrenes from Iminoiodinanes 139
- 5.1.1 Intramolecular C–H amination 140
- 5.1.2 Intermolecular C–H Aminations 144
- 5.1.3 Mechanism of C–H Amination using Hypervalent Iodine Reagents 147
- 5.2 Metal Nitrenes from *N*-Tosyloxycarbamates 149 References 154

6 The Palladium-Catalyzed Synthesis of Aromatic Heterocycles 157 Yingdong Lu and Bruce A. Arndtsen

- 6.1 Introduction 157

VIII Contents

- Addition to Alkynes 159 6.2.1
- Heteroatom Addition to Alkynes with Functionalization 164 6.2.2
- Heteroatom Addition to Allenes 168 6.2.3
- Heteroatom Additions to Alkenes 171 6.2.4
- Palladium-Catalyzed Carbon-Heteroatom Bond Forming 6.3 Reactions 174
- 6.3.1 Palladium-Catalyzed Carbon-Nitrogen Bond Formation 174
- 6.3.2 Palladium-Catalyzed Carbon–Oxygen Bond Formation 177
- 6.4 Palladium-Catalyzed Carbon-Heteroatom Bond Formation with Alkynes 178
- 6.5 Heck Cyclizations 182
- 6.6 Palladium Catalyzed C-H Bond Activation 185
- 6.7 Multicomponent Coupling Reactions 189
- 6.8 Summary and Outlook 194
 - References 194

7 New Reactions of Copper Acetylides: Catalytic Dipolar Cycloadditions and Beyond 199

- Valery V. Fokin
- 7.1 Introduction 199
- 7.2 Azide-Alkyne Cycloaddition: Basics 200
- 7.3 Copper-Catalyzed Cycloadditions 203
- 7.3.1 Catalysts and Ligands 203
- 7.3.2 CuAAC with In Situ Generated Azides 208
- 7.3.3 Mechanistic aspects of the CuAAC Reaction 208
- Reactions of Sulfonyl Azides 215 7.3.4
- 7.3.5 Sulfonyl Triazoles as Stable Carbene Precursors 215
- 7.3.6 Reactions of 1-Iodoalkynes 218
- 7.3.7 Reactions of Copper Acetylides with Other Dipoles 220 References 221
- 8 Transition Metal-Catalyzed Synthesis of Monocyclic Five-Membered Aromatic Heterocycles 227

Alexander S. Dudnik and Vladimir Gevorgyan

- 8.1 Introduction 227
- 8.2 Monocyclic Five-Membered Heterocycles 228
- 8.2.1 Furans 228
- 8.2.1.1 Synthesis of Furans via Cycloisomerization Reactions 228
- 8.2.1.2 Synthesis of Furans via "3 + 2" Cycloaddition Reactions 264 8.2.2 Pyrroles 273
- 8.2.2.1 Synthesis of Pyrroles via Cycloisomerization Reactions 273
- 8.2.2.2 Synthesis of Pyrroles via "4 + 1" Cycloaddition Reactions 283
- 8.2.2.3 Synthesis of Pyrroles via "3 + 2" Cycloaddition Reactions 293
- 8.2.2.4 Synthesis of Pyrroles via "2 + 2 + 1" Cycloaddition Reactions 298

8.3	Conclusion 303
8.4	Abbreviations 308
	References 309
9	Transition Metal-Catalyzed Synthesis of Fused Five-Membered
	Aromatic Heterocycles 317
	Alexander S. Dudnik and Vladimir Gevorgyan
9.1	Introduction 317
9.2	Fused Five-Membered Heterocycles 318
9.2.1	Benzofurans 318
9.2.1.1	Synthesis of Benzofurans via Cycloisomerization Reactions 318
9.2.1.2	Synthesis of Benzofurans via Intramolecular Arylation Reactions 327
9.2.1.3	Synthesis of Benzofurans via " $4 + 1$ " Cycloaddition Reactions 329
9.2.1.4	Synthesis of Benzofurans via " $3 + 2$ " Cycloaddition Reactions 331
9.2.2	Benzothiophenes 333
9.2.2.1	Synthesis of Benzothiophenes via Cycloisomerization Reactions 334
9.2.2.2	Synthesis of Benzothiophenes via "4 + 1" Cycloaddition Reactions 337
9.2.2.3	Synthesis of Benzothiophenes via " $3 + 2$ " Cycloaddition Reactions 338
9.2.3	Indoles 339
9.2.3.1	Synthesis of Indoles via Cycloisomerization Reactions 340
9.2.3.2	Synthesis of Indoles via Intramolecular Arylation Reactions 362
9.2.3.3	Synthesis of Indoles via "4 + 1" Cycloaddition Reactions 368
9.2.3.4	Synthesis of Indoles via " $3 + 2$ " Cycloaddition Reactions 373
9.2.4	Isoindoles 381
9.2.4.1	Synthesis of Isoindoles via Cycloisomerization Reactions 381
9.2.4.2	Synthesis of Isoindoles via "4 + 1" Cycloaddition Reactions 383
9.2.5	Indolizines 383
9.2.5.1	Synthesis of Indolizines via Cycloisomerization Reactions 385
9.2.5.2	Synthesis of Indolizines via " $3 + 2$ " Cycloaddition Reactions 396
9.3	Conclusion 399
9.4	Abbreviations 401
	References 402
10	Carbon–Heteroatom Bond Formation by Rh ¹ -Catalyzed
	Ring-Opening Reactions 411
	Matthew J. Fleming and Mark Lautens
10.1	Introduction 411
10.2	Ring-Opening meso-Oxabicyclic Alkenes with Oxygen-Based
	Nucleophiles 412
10.3	Ring-Opening meso-Oxabicyclic Alkenes with Nitrogen-Based
	Nucleophiles 417
10.4	Ring-Opening meso-Azabicyclic Alkenes with Nitrogen-Based
	Nucleophiles 419
10.5	Ring-Opening meso-Oxabicyclic Alkenes with Sulfur-Based
	Nucleophiles 423

X Contents

10.6	Mechanistic Model 424
10.7	Ring-Opening Unsymmetrical Oxa- and Aza-bicyclic
10.7	Alkenes with Heteroatom Nucleophiles 427
10.8	Ring-Opening of Vinyl Epoxides with Heteroatom Nucleophiles 432
10.9	Conclusion 434
10.7	References 435
11	Gold-Catalyzed Addition of Nitrogen and Sulfur Nucleophiles
	to C-C Multiple Bonds 437
	Ross A. Widenhoefer and Feijie Song
11.1	Introduction 437
11.2	Addition of Nitrogen Nucleophiles to Alkynes 437
11.2.1	Hydroamination 437
11.2.1.1	Intramolecular Processes 437
11.2.1.2	Intermolecular Processes 440
11.2.2	Acetylenic Schmidt Reaction 441
11.2.3	Tandem C–N/C–C Bond Forming Processes 442
11.2.4	Tandem C–N/C–X Bond Forming Processes 446
11.2.+	Hydroamination of Allenes 448
11.3.1	Intramolecular Processes 448
11.3.2	Intermolecular Processes 449
11.3.3	Enantioselective Processes 451
11.5.5	Hydroamination of Alkenes and Dienes 453
11.4.1	Unactivated Alkenes 453
11.4.1.1	Sulfonamides as Nucleophiles 453
11.4.1.2	Carboxamide Derivatives as Nucleophiles 454
11.4.1.3	Ammonium Salts as Nucleophiles 455
11.4.2	Methylenecyclopropanes, Vinylcyclopropanes, and Dienes 456
11.5	Addition of Sulfur Nucleophiles to C–C Multiple Bonds 457
11.5.1	Alkynes 457
11.5.2	Allenes and Dienes 458
11.3.2	References 459
	References 457
12	Gold-Catalyzed Addition of Oxygen Nucleophiles
	to C–C Multiple Bonds 463
	Ross A. Widenhoefer and Feijie Song
12.1	Introduction 463
12.2	Addition to Alkynes 464
12.2.1	Carbinols as Nucleophiles 464
12.2.1	Intermolecular Processes 464
12.2.1.1	Intramolecular Processes 465
12.2.1.2	Tandem C–O/C–C Bond Forming Processes 466
12.2.2	Ketones as Nucleophiles 467
12.2.3	Aldehydes as Nucleophiles 469
12.2.3	Carboxylic Acids as Nucleophiles 471
- 4 4 T	Caroonyne ricids as mucicopinics +/1

Contents XI

- 12.2.5 Rearrangements of Propargylic Carboxylates 471
- 12.2.5.1 Acyl Migration Followed by Nucleophilc Attack 471
- 12.2.5.2 Acyl Migration Followed by $C=C/C\equiv C$ Addition 473
- 12.2.5.3 Acyl Migration Leading to Diene/Ketone Formation 474
- 12.2.6 Carbonates and Carbamates as Nucleophiles 475
- 12.2.7 Ethers and Epoxides as Nucleophiles 476
- 12.2.8 Additional Nucleophiles 477
- 12.3 Addition to Allenes 478
- 12.3.1 Carbinols as Nucleophiles 478
- 12.3.1.1 Intramolecular Processes 478
- 12.3.1.2 Enantioselective Processes 480
- 12.3.1.3 Intermolecular Processes 482
- 12.3.2 Ketones as Nucleophiles 483
- 12.3.3 Carboxylic Acid Derivatives as Nucleophiles 484
- 12.4 Addition to Alkenes 485
- 12.4.1 Alkenes and Dienes 485
- 12.4.2 Cyclization/Nucleophile Capture of Enynes 487 References 488

Index 493