Jörg Friedrich

The Plasma Chemistry of Polymer Surfaces

Advanced Techniques for Surface Design

WILEY-VCH Verlag GmbH & Co. KGaA

Contents

Preface XI

1 Introduction 1

References 9

2 Interaction between Plasma and Polymers 11

- 2.1 Special Features of Polymers 11
- 2.2 Processes on Polymer Surfaces during Plasma Exposure 14
- 2.3 Influence of Polymer Type 23
- 2.4 Methods, Systematic, and Definitions 24
- 2.4.1 Surface Modification (Functionalization) 25
- 2.4.2 Coating of Polymer Surfaces with Functional Group-Bearing Plasma Polymers 26
- 2.4.2.1 Plasma-Chemical Polymerization 26
- 2.4.2.2 Pulsed-Plasma Polymerization 27
- 2.4.3 Other Polymer Process 28
- 2.4.3.1 Polymer Etching 28

2.4.3.2 Crosslinking 29

2.5 Functional Groups and Their Interaction with Other Solids 29 References 31

3 Plasma 35

- 3.1 Plasma State 35
- 3.2 Types of Low-Pressure Glow Discharges 45
- 3.3 Advantages and Disadvantages of Plasma Modification of Polymer Surfaces 48
- 3.4 Energetic Situation in Low-Pressure Plasmas 49
- 3.5 Atmospheric and Thermal Plasmas for Polymer Processing 50
- 3.6 Polymer Characteristics 51
- 3.7 Chemically Active Species and Radiation 53 References 53

٧

VI Contents

4	Chemistry and Energetics in Classic and Plasma Processes	55
---	--	----

- Introduction of Plasma Species onto Polymer Surfaces 55 4.1
- Oxidation by Plasma Fluorination and by Chemical Fluorination 64 4.2
- 4.3 Comparison of Plasma Exposure, Ionizing Irradiation, and Photo-oxidation of Polymers 65 References 67

Kinetics of Polymer Surface Modification 69 5

- 5.1 Polymer Surface Functionalization 69
- 5.1.1 Kinetics of Surface Functionalization 69
- Unspecific Functionalizations by Gaseous Plasmas 72 5.1.2
- 5.2 Polymer Surface Oxidation 72
- 5.2.1 Polyolefins 72
- 5.2.2 Aliphatic Self-Assembled Monolayers 73
- 5.2.3 Polyethylene 75
- 5.2.4 Polypropylene 78
- 5.2.5 Polystyrene 79
- 5.2.6 Polycarbonate 85
- 5.2.7 Poly(ethylene terephthalate) 86
- 5.2.8 Summary of Changes at Polymer Surfaces on Exposure to Oxygen Plasma 94
- 5.2.9 Categories of General Behavior of Polymers on Exposure to Oxygen Plasma 97
- 5.2.10 Role of Contaminations at Polymer Surfaces 100
- 5.2.11 Dependence of Surface Energy on Oxygen Introduction 102
- 5.3 Polymer Surface Functionalization with Amino Groups 103
- Ammonia Plasma Treatment for Introduction of 5.3.1 Amino Groups 103
- 5.3.2 Side Reactions 109
- 5.3.3 Instability Caused by Post-Plasma Oxidation 110
- 5.3.4 Exposure of Self-Assembled (SAM) and Langmuir-Blodgett (LB) Monolayers to Ammonia Plasma 111
- XPS Measurements of Elemental Compositions 112 5.3.5
- 5.3.6 ToF-SIMS Investigations 114
- 5.3.7 ATR-FTIR 115
- 5.3.8 CHN Analysis 117
- 5.3.9 NMR 118
- 5.3.10 Discussion of Hydrogenation and Amination of Polyolefins by Ammonia Plasma 120
- 5.4 Carbon Dioxide Plasmas 123
- 5.5 SH-Forming Plasmas 126
- 5.6 Fluorinating Plasmas 126
- 5.7 Chlorination 134
- 5.8 Polymer Modification by Noble Gas Plasmas 136 References 139

- 6 Bulk, Ablative, and Side Reactions 145
- 6.1 Changes in Supermolecular Structure of Polymers 145
- 6.2 Polymer Etching 151
- 6.3 Changes in Surface Topology 155
- 6.4 Plasma Susceptibility of Polymer Building Blocks 158
- 6.5 Plasma UV Irradiation 160
- 6.6 Absorption of Radiation by Polymers 162
- 6.7 Formation of Unsaturations 165
- 6.8 Formation of Macrocycles 169
- 6.9 Polymer Degradation and Supermolecular Structure of Polymers 171
- 6.10 Crosslinking versus Degradation of Molar Masses 175
- 6.11 Radicals and Auto-oxidation 177
- 6.12 Plasma-Induced Photo-oxidations of Polymers 181
- 6.13 Different Degradation Behavior of Polymers on Exposure to Oxygen Plasma 181
- 6.14 Derivatization of Functional Groups for XPS 185 References 193

7 Metallization of Plasma-Modified Polymers 197

- 7.1 Background 197
- 7.2 Polymer Plasma Pretreatment for Well Adherent Metal–Polymer Composites 198
- 7.2.1 Surface Cleaning by Plasma for Improving Adhesion 199
- 7.2.2 Oxidative Plasma Pretreatment of Polymers for Adhesion Improvement 202
- 7.2.3 Reductive Plasma Pretreatment of Perfluorinated Polymers 207
- 7.2.4 Adhesion Improvement Using Homo- and Copolymer Interlayers 210
- 7.3 New Adhesion Concept 213
- 7.4 Redox Reactions along the Interface 220
- 7.5 Influence of Metal–Polymer Interactions on Interface-Neighbored Polymer Interphases 224
- 7.6 Metal-Containing Plasma Polymers 227
- 7.7 Plasma-Initiated Deposition of Metal Layers 228
- 7.8 Inspection of Peeled Surfaces 228
- 7.9 Life Time of Plasma Activation 229
 - References 234

8 Accelerated Plasma-Aging of Polymers 239

- 8.1 Polymer Response to Long-Time Exposure to Plasmas 239
- 8.2 Hydrogen Plasma Exposure 244
- 8.3 Noble Gas Plasma Exposure, CASING 247 References 247

9	Polymer Surface Modifications with Monosort Functional Groups 249
9.1	Various Ways of Producing Monosort Functional Groups at
	Polyolefin Surfaces 249
9.2	Oxygen Plasma Exposure and Post-Plasma Chemical Treatment for
	Producing OH Groups 251
9.3	Post-Plasma Chemical Grafting of Molecules, Oligomers, or
	Polymers 256
9.3.1	Grafting onto OH Groups 256
9.3.2	Grafting onto NH ₂ Groups 257
9.3.3	Grafting onto COOH-Groups 258
9.4	Selective Plasma Bromination for Introduction of Monosort
	C–Br Bonds to Polyolefin Surfaces 258
9.4.1	General Remarks 258
9.4.2	History of the Plasma Bromination Process 260
9.4.3	Theoretical Considerations on the Plasma Bromination Process 260
9.4.4	Bromination Using Bromoform or Bromine Plasmas 265
9.4.5	Bromination Using Allyl Bromide Plasma 269
9.4.6	Grafting onto Bromine Groups 271
9.4.7	Yield in Density of Grafted Molecules at Polyolefin Surfaces 272
9.4.8	Change of Surface Functionality 277
9.4.9	Surface Bromination of Polyolefins: Conclusions 279
9.4.10	Bromination of Poly(ethylene terephthalate) 280
9.5	Functionalization of Graphitic Surfaces 281
9.5.1	Bromination with Bromine Plasma 281
9.5.2	Dependence of Bromination Rate on Plasma Parameters 286
9.5.3	Alternative Plasma Bromination Precursors 287
9.5.4	Efficiency in Bromination of Carbon and
	Polymer Materials 288
9.5.5	Grafting of Amines to Brominated Surfaces 288
9.5.6	Refunctionalization to OH Groups 289
9.5.7	NH ₂ Introduction onto Carbon Surfaces 289
9.6	SiO_x Deposition 292
9.7	Grafting onto Radical Sites 294
9.7.1	Types of Produced Radicals 295
9.7.2	Grafting onto C-Radical Sites 295
9.7.3	Post-Plasma Quenching of Radicals 296
9.7.4	Grafting on Peroxide Radicals 296
9.7.5	Plasma Ashing 297
	References 297
10	Atmospheric-Pressure Plasmas 303
10.1	General 303
10.2	Dielectric Barrier Discharge (DBD) Treatment 304
10.3	Polymerization by Introduction of Gases, Vapors, or Aerosols into a
	DBD 311

DBD 311

- 10.4 Introduction of Polymer Molecules into the Atmospheric-Pressure Plasma and Their Deposition as Thin Polymer Films (Aerosol-DBD) 312
- 10.5 DBD Treatment of Polyolefin Surfaces for Improving Adhesion in Metal–Polymer Composites 320
- 10.6 Electrospray Ionization (ESI) Technique 321
- 10.6.1 ESI + Plasma 327
- 10.6.2 ESI without Plasma 328
- 10.6.3 Comparison of Aerosol-DBD and Electrospray 329
- 10.6.4 Topography 330
- 10.6.5 Electrophoretic Effect of ESI 333 References 333
- 11 Plasma Polymerization 337
- 11.1 Historical 337
- 11.2 General Intention and Applications 340
- 11.3 Mechanism of Plasma Polymerization 341
- 11.3.1 Plasma-Induced Radical Chain-Growth Polymerization Mechanism 342
- 11.3.2 Ion-Molecule Reactions 344
- 11.3.3 Fragmentation-(Poly)recombination ("Plasma Polymerization") 344
- 11.4 Plasma Polymerization in Adsorption Layer or Gas Phase 345
- 11.5 Side-Reactions 346
- 11.6 Quasi-hydrogen Plasma 348
- 11.7 Kinetic Models Based on Ionic Mechanism 351
- 11.8 Kinetic Models of Plasma-Polymer Layer Deposition Based on a Radical Mechanism 353
- 11.9 Dependence on Plasma Parameter 358
- 11.10 Structure of Plasma Polymers 361
- 11.11 Afterglow (Remote or Downstream) Plasmas 364
- 11.12 Powder Formation 366
- 11.13 Plasma Catalysis 367
- 11.14 Copolymerization in Continuous-Wave Plasma Mode 368 References 370

12 Pulsed-Plasma Polymerization 377

- 12.1 Introduction 377
- 12.2 Basics 377
- 12.3 Presented Work on Pulsed-Plasma Polymerization 381
- 12.4 Role of Monomers in Pulsed-Plasma Polymerization 382
- 12.5 Dark Reactions 384
- 12.6 Pressure-Pulsed Plasma 385
- 12.7 Differences between Radical and Pulsed-Plasma Polymerization 389
- 12.8 Surface Structure and Composition of Pulsed-Plasma Polymers 391

- X Contents
 - 12.9 Plasma-Polymer Aging and Elimination of Radicals in Plasma Polymers 401
 - 12.10 Functional Groups Carrying Plasma-Polymer Layers 403
 - 12.10.1 Allyl Alcohol 403
 - 12.10.2 Allylamine 413
 - 12.10.3 Acrylic Acid 416
 - 12.10.4 Acrylonitrile 421
 - 12.11 Vacuum Ultraviolet (VUV) Induced Polymerization 422
 - 12.12 Plasma-Initiated Copolymerization 424
 - 12.12.1 Reasons for Copolymerization 424
 - 12.12.2 Copolymer Kinetics 427
 - 12.12.3 Allyl Alcohol Copolymers with Ethylene, Butadiene, and Acetylene 427
 - 12.12.4 Allyl Alcohol Copolymers with Styrene 434
 - 12.12.5 Acrylic Acid 443
 - 12.12.6 Copolymers with Allylamine 445
 - 12.13 Graft Polymerization 447
 - 12.14 Grafting onto Functional Groups 450 References 451

Index 457