Gerald Gerlach Wolfram Dötzel

Einführung in die Mikrosystemtechnik

Ein Kursbuch für Studierende

mit 169 Bildern, 49 Beispielen sowie 54 Aufgaben

Fachbuchverlag Leipzig im Carl Hanser Verlag

Inhaltsverzeichnis

1	Einfüh	rung	13	
1.1	Was ist	Was ist ein Mikrosystem?		
1.2	Mikroe	Mikroelektronik und Mikrosystemtechnik		
1.3	Anwen	dungsfelder und Entwicklungstrends	22	
1.4	Beispiel Drehratensensor		23	
	1.4.1	Aufbau und Funktion	24	
	1.4.2	Funktionskomponenten und -elemente	26	
2	Skalier	rung und Ähnlichkeit	31	
2.1	Skalieru	ung	31	
2.2	Ähnlich	nkeit und Kennzahlen	37	
3		toffe		
3.1		cht		
3.2	Einkristallines Silizium			
	3.2.1	Beschreibung der Orientierung von Flächen und Richtungen im K		
	3.2.2	Oberflächeneigenschaften bei verschiedener Orientierung	55	
	3.2.3	Anisotrope elastische Eigenschaften		
	3.2.4	Festigkeit		
	3.2.5	Siliziumscheiben	63	
3.3	Gläser		67	
	3.3.1	Allgemeine Eigenschaften von Glas	68	
	3.3.2	Viskoelastisches Verhalten	69	
	3.3.3	Gläser in der Mikrosystemtechnik	71	
3.4	Polymere			
	3.4.1	Thermoplastische Werkstoffe in der Mikrosystemtechnik	74	
	3.4.2	Fotoresist	77	
3.5	Dünnschichten			
	3.5.1	Siliziumoxid, Siliziumnitrid	82	
	3.5.2	Elektrisch leitende Schichten	84	
	3.5.3	Polysiliziumschichten	84	
3.6	Materialeigenschaften im Vergleich8			

4	Mikrot	technische Fertigungsverfahren	88
4.1	Überbli	ick	88
4.2	Reinheit in der Fertigung		
	4.2.1	Reinraumtechnik	95
	4.2.2	Waferreinigung	99
4.3	Lithografie		
	4.3.1	Prinzip	
	4.3.2	Lithografischer Prozess	
	4.3.3	Minimal strukturierbare Linienbreiten	
	4.3.4	Doppelseitenlithografie	106
	4.3.5	Lithografie in stark profilierten Strukturen	
4.4	Schichtherstellung		107
	4.4.1	Überblick	
	4.4.2	Schichtkonformität	109
	4.4.3	Thermische Oxidation	109
	4.4.4	Aufdampfen	111
	4.4.5	Sputtern	
	4.4.6	Chemische Gasphasenabscheidung	
	4.4.7	Vergleich	
4.5	Schichtstrukturierung		
	4.5.1	Grundlagen	118
	4.5.2	Nassätzen	120
	4.5.3	Trockenätzen	120
	4.5.4	Lift-off-Prozess	123
4.6	Anisotropes nasschemisches Tiefenätzen		123
	4.6.1	Prinzip	124
	4.6.2	Anisotrope Ätzlösungen	
	4.6.3	Ätzraten	126
	4.6.4	Ätzstoppverfahren	129
	4.6.5	Ätzfiguren	131
	4.6.6	Entwurf von Ätzmasken	140
4.7	Dotierung		142
	4.7.1	Diffusion	142
	4.7.2	Ionenimplantation	146
	4.7.3	Vergleich der Dotierungsverfahren	148
4.8	Verbindungsverfahren		149
	4.8.1	Eutektisches Bonden	
	4.8.2	Anodisches Bonden	
	4.8.3	Siliziumdirektbonden	

	4.8.4	Vergleich der Verbindungsverfahren	152
4.9	Isolation	nstechniken	153
	4.9.1	SIMOX-Verfahren	154
	4.9.2	BESOI-Verfahren	
	4.9.3	Smart-Cut-Verfahren	157
4.10	Oberflächenmikromechanik		158
	4.10.1	Prinzip	158
	4.10.2	Herstellung von Hohlräumen	161
	4.10.3	Haften beweglicher Strukturen	164
	4.10.4	Vergleich von Volumen- und Oberflächenmikromechanik	167
4.11	Oberflächennahe Mikromechanik		167
	4.11.1	Prinzip	168
	4.11.2	Verfahren	168
4.12	HARMS	ST	171
	4.12.1	Begriffsbestimmung	171
	4.12.2	LIGA-Verfahren	
4.13	Miniatu	risierte klassische Verfahren	173
	4.13.1	Mikrospritzgießen	175
	4.13.2	Mikroheißprägen	178
	4.13.3	Mikrozerspanen	179
4.14	Auswah	l von mikrotechnischen Fertigungsverfahren	182
5	Aufbau	- und Verbindungstechnik	190
5.1		en und Anforderungen	
	5.1.1	Aufgaben	
	5.1.2	Zuverlässigkeitsgerechtes Packaging	
5.2	Funktionen der Aufbau- und Verbindungstechnik		
	5.2.1	Mechanische Verbindungen	
	5.2.2	Elektrische Verbindungen	
	5.2.3	Wärmeabführung	
	5.2.4	Verkapselung und Gehäusung	
6	Funktio	ons- und Formelemente der Mikrosystemtechnik	200
6.1	Mechanische Elemente		
V.1	6.1.1	Empfindlichkeit in Nutzrichtung	
	6.1.2	Querempfindlichkeit	
	6.1.3	Eigenfrequenz	
	6.1.4	Dämpfung	
	6.1.5	Güte	
	0.1.5	UUL	

	6.1.6	Amplitudengang	218
	6.1.7	Spannung an der Einspannstelle	
6.2	Fluidis	sche Elemente	224
	6.2.1	Kennzahlen und Modellsysteme	224
	6.2.2	Elementtypen	228
	6.2.3	Fluidische Schnittstellen	
	6.2.4	Entwurf mikrofluidischer Elemente und Komponenten	231
6.3	Therm	ische Elemente	
	6.3.1	Thermisch-elektrische Analogien	237
	6.3.2	Grundgleichungen für den Wärmetransport	
	6.3.3	Ersatzschaltungen	
7	Sensor	ren und Aktoren	250
7.1	Umkeh	nrbare und parametrische Wandler	251
	7.1.1	Umkehrbare Wandler	
	7.1.2	Parametrische Wandler	
	7.1.3	Stationäre umkehrbare Wandler	
7.2	Wandle	er für Sensoren und Aktoren	
	7.2.1	Elektrostatische Wandler	
	7.2.2	Piezoelektrische Wandler	
	7.2.3	Elektrodynamische Wandler	
	7.2.4	Thermomechanische Wandler	
	7.2.5	Piezoresistive Wandler	
8	Entwu	rf von Mikrosystemen	306
8.1		fsmethoden und Werkzeuge	
8.2		e mit konzentrierten Parametern	
	8.2.1	Verhaltensbeschreibung elektromechanischer Systeme	
	8.2.2	Analyse des statischen Verhaltens elektromechanischer Systeme	
	8.2.3	Analyse elektromechanischer Systeme bei harmonischen Lasten	
	8.2.4	Transiente Analyse elektromechanischer Systeme	
8.3	Systeme	e mit verteilten Parametern	324
	8.3.1	Verhaltensbeschreibung mittels analytischer Modelle	
	8.3.2	Numerische Methoden auf der Basis der Finiten-Elemente-Methode	327
	8.3.3	Makromodellierung komplexer Systeme durch Ordnungsreduktion	329
9	Einflus	s technologischer Prozesse auf Mikrosystemeigenschaften	338
9.1		terbasierter Mikrosystementwurf	
9.2		er Mikrosystementwurf	

Anhang A Physikalische Konstanten	
Anhang B Koordinatentransformation	352
B.1 Elastische Koeffizienten	353
B.2 Piezoresistive Koeffizienten	
Anhang C Eigenschaften von Siliziumoxid- und Siliziumnitrid-Schichten	359
Anhang D Nomenklatur von Dünnschichtprozessen	361
Anhang E Haftung bei oberflächen-mikromechanischen Strukturen	364
E.1 Kapillarkräfte	364
E.2 Kritische Länge von Biegefedern	
Symbolverzeichnis	367
Abkürzungsverzeichnis	375
Stichwortverzeichnis	380