R.F. Egerton

Electron Energy-Loss Spectroscopy in the Electron Microscope

Third Edition

Contents

1	An li	ntroduct	tion to EELS	1
	1.1	Interac	ction of Fast Electrons with a Solid	2
	1.2	The El	lectron Energy-Loss Spectrum	5
	1.3	The D	evelopment of Experimental Techniques	8
		1.3.1	Energy-Selecting (Energy-Filtering) Electron	
			Microscopes	12
		1.3.2	Spectrometers as Attachments to a TEM	13
	1.4	Altern	ative Analytical Methods	15
		1.4.1	Ion Beam Methods	16
		1.4.2	Incident Photons	17
		1.4.3	Electron Beam Techniques	19
	1.5	Comp	arison of EELS and EDX Spectroscopy	22
		1.5.1	Detection Limits and Spatial Resolution	22
		1.5.2	Specimen Requirements	24
		1.5.3	Accuracy of Quantification	25
		1.5.4	Ease of Use and Information Content	25
	1.6	Furthe	er Reading	26
2	Ener	gy-Loss	Instrumentation	29
	2.1	Energ	y-Analyzing and Energy-Selecting Systems	29
		2.1.1	The Magnetic Prism Spectrometer	30
		2.1.2	Energy-Filtering Magnetic Prism Systems	33
		2.1.3	The Wien Filter	37
		2.1.4	Electron Monochromators	39
	2.2	Optics	s of a Magnetic Prism Spectrometer	44
		2.2.1	First-Order Properties	45
		2.2.2	Higher Order Focusing	51
		2.2.3	Spectrometer Designs	53
		2.2.4	Practical Considerations	56
		2.2.5	Spectrometer Alignment	57
	2.3	The U	se of Prespectrometer Lenses	62
		2.3.1	TEM Imaging and Diffraction Modes	63
		2.3.2	Effect of Lens Aberrations on Spatial Resolution	64

		2.3.3	Effect of Lens Aberrations on Collection Efficiency	. 66
		2.3.4	Effect of TEM Lenses on Energy Resolution	. 68
		2.3.5	STEM Optics	. 70
	2.4	Recor	ding the Energy-Loss Spectrum	. 72
		2.4.1	Spectrum Shift and Scanning	. 73
		2.4.2	Spectrometer Background	. 75
		2.4.3	Coincidence Counting	. 76
		2.4.4	Serial Recording of the Energy-Loss Spectrum	. 77
		2.4.5	DOE of a Single-Channel System	. 82
		2.4.6	Serial-Mode Signal Processing	. 83
	2.5	Parall	el Recording of Energy-Loss Data	. 85
		2.5.1	Types of Self-Scanning Diode Array	. 85
		2.5.2	Indirect Exposure Systems	. 86
		2.5.3	Direct Exposure Systems	. 90
		2.5.4	DOE of a Parallel-Recording System	. 91
		2.5.5	Dealing with Diode Array Artifacts	. 94
	2.6	Energ	y-Selected Imaging (ESI)	. 98
		2.6.1	Post-column Energy Filter	. 98
		2.6.2	In-Column Filters	. 100
		2.6.3	Energy Filtering in STEM Mode	100
		2.6.4	Spectrum Imaging	103
		2.6.5	Comparison of Energy-Filtered TEM and STEM	. 106
		2.6.6	Z-Contrast and Z-Ratio Imaging	. 108
3	Physi	cs of El	lectron Scattering	111
-	3.1	Elastic	c Scattering	111
		3.1.1	General Formulas	112
		3.1.2	Atomic Models	112
		3.1.3	Diffraction Effects	116
		3.1.4	Electron Channeling	118
		3.1.5	Phonon Scattering	120
		3.1.6	Energy Transfer in Elastic Scattering	120
	3.2	Inelas	tic Scattering	124
		3.2.1	Atomic Models	121
		3.2.2	Bethe Theory	121
		3.2.3	Dielectric Formulation	130
		3.2.4	Solid-State Effects	132
	3.3	Excita	tion of Outer-Shell Electrons	135
		3.3.1	Volume Plasmons	135
		3.3.2	Single-Electron Excitation	146
		3.3.3	Excitons	152
		3.3.4	Radiation Losses	154
		3.3.5	Surface Plasmons	156
		3.3.6	Surface-Reflection Spectra	164
		3.3.7	Plasmon Modes in Small Particles	167
				107

	3.4	Single,	Plural, and Multiple Scattering		169
		3.4.1	Poisson's Law		170
		3.4.2	Angular Distribution of Plural Inelastic Scattering		172
		3.4.3	Influence of Elastic Scattering		175
		3.4.4	Multiple Scattering		176
		3.4.5	Coherent Double-Plasmon Excitation		177
	3.5	The Sp	pectral Background to Inner-Shell Edges		178
		3.5.1	Valence-Electron Scattering		178
		3.5.2	Tails of Core-Loss Edges		179
		3.5.3	Bremsstrahlung Energy Losses		180
		3.5.4	Plural-Scattering Contributions to the Background		181
	3.6	Atomi	c Theory of Inner-Shell Excitation		184
		3.6.1	Generalized Oscillator Strength		184
		3.6.2	Relativistic Kinematics of Scattering		190
		3.6.3	Ionization Cross Sections		193
	3.7	The Fo	orm of Inner-Shell Edges		197
		3.7.1	Basic Edge Shapes		197
		3.7.2	Dipole Selection Rule		203
		3.7.3	Effect of Plural Scattering		203
		3.7.4	Chemical Shifts in Threshold Energy		204
	3.8	Near-E	Edge Fine Structure (ELNES)	· · · ·	206
		3.8.1	Densities-of-States Interpretation		206
		3.8.2	Multiple-Scattering Interpretation		213
		3.8.3	Molecular-Orbital Theory		215
		3.8.4	Multiplet and Crystal-Field Effects		215
	3.9	Extended Energy-Loss Fine Structure (EXELFS)			
	3.10	Core E	Excitation in Anisotropic Materials		220
	3.11	Delocalization of Inelastic Scattering			223
4	Quan	titative	Analysis of Energy-Loss Data		231
	4.1	Decon	volution of Low-Loss Spectra		231
		4.1.1	Fourier Log Method		231
		4.1.2	Fourier Ratio Method		240
		4.1.3	Bayesian Deconvolution		241
		4.1.4	Other Methods		243
	4.2	Krame	ers–Kronig Analysis		243
		4.2.1	Angular Corrections		244
		4.2.2	Extrapolation and Normalization		244
		4.2.3	Derivation of the Dielectric Function		245
		4.2.4	Correction for Surface Losses		248
		4.2.5	Checks on the Data		248
	4.3	Decor	volution of Core-Loss Data		249
		4.3.1	Fourier Log Method		249
		4.3.2	Fourier Ratio Method		250

Contents

		4.3.3	Bayesian Deconvolution	255
		4.3.4	Other Methods	256
	4.4	Separa	tion of Spectral Components	257
		4.4.1	Least-Squares Fitting	258
		4.4.2	Two-Area Fitting	260
		4.4.3	Background-Fitting Errors	261
		4.4.4	Multiple Least-Squares Fitting	265
		4.4.5	Multivariate Statistical Analysis	265
		4.4.6	Energy- and Spatial-Difference Techniques	269
	4.5	Eleme	ntal Quantification	270
		4.5.1	Integration Method	270
		4.5.2	Calculation of Partial Cross Sections	273
		4.5.3	Correction for Incident Beam Convergence	274
		4.5.4	Quantification from MLS Fitting	276
	4.6	Analys	sis of Extended Energy-Loss Fine Structure	277
		4.6.1	Fourier Transform Method	277
		4.6.2	Curve-Fitting Procedure	284
	4.7	Simula	ation of Energy-Loss Near-Edge Structure (ELNES)	286
		4.7.1	Multiple Scattering Calculations	286
		4.7.2	Band Structure Calculations	288
5	TEM	Applic	ations of EELS	293
-	5.1	Measu	rement of Specimen Thickness	293
		5.1.1	Log-Ratio Method	294
		5.1.2	Absolute Thickness from the K–K Sum Rule	302
		5.1.3	Mass Thickness from the Bethe Sum Rule	304
	5.2	Low-L	Loss Spectroscopy	306
		5.2.1	Identification from Low-Loss Fine Structure	306
		5.2.2	Measurement of Plasmon Energy	
			and Alloy Composition	309
		5.2.3	Characterization of Small Particles	310
	5.3	Energ	y-Filtered Images and Diffraction Patterns	314
		5.3.1	Zero-Loss Images	315
		5.3.2	Zero-Loss Diffraction Patterns	317
		5.3.3	Low-Loss Images	318
		5.3.4	Z-Ratio Images	319
		5.3.5	Contrast Tuning and MPL Imaging	320
		5.3.6	Core-Loss Images and Elemental Mapping	321
	5.4	Eleme	ental Analysis from Core-Loss Spectroscopy	324
		5.4.1	Measurement of Hydrogen and Helium	327
		5.4.2	Measurement of Lithium, Beryllium, and Boron	329
		5.4.3	Measurement of Carbon, Nitrogen, and Oxygen	330
		5.4.4	Measurement of Fluorine and Heavier Elements	333
	5.5	5.4.4 Spatia	Measurement of Fluorine and Heavier Elements al Resolution and Detection Limits	333 335

	5.5.2	Loss of Resolution Due to Elastic Scattering	336
	5.5.3	Delocalization of Inelastic Scattering	337
	5.5.4	Statistical Limitations and Radiation Damage	340
5.6	Structu	Iral Information from EELS	346
	5.6.1	Orientation Dependence of Ionization Edges	346
	5.6.2	Core-Loss Diffraction Patterns	350
	5.6.3	ELNES Fingerprinting	352
	5.6.4	Valency and Magnetic Measurements	
		from White-Line Ratios	357
	5.6.5	Use of Chemical Shifts	361
	5.6.6	Use of Extended Fine Structure	362
	5.6.7	Electron–Compton (ECOSS) Measurements	366
5.7	Applic	ation to Specific Materials	368
	5.7.1	Semiconductors and Electronic Devices	368
	5.7.2	Ceramics and High-Temperature Superconductors	374
	5.7.3	Carbon-Based Materials	378
	5.7.4	Polymers and Biological Specimens	386
	5.7.5	Radiation Damage and Hole Drilling	389
Annendix	A Ref	he Theory for High Incident Energies	
rppenuix 1	hne and	Anisotronic Materials	300
	Δ 1	Anisotropic Specimens	100
	7		402
Appendix 1	B Cor	nputer Programs	405
	B.1	First-Order Spectrometer Focusing	405
	B.2	Cross Sections for Atomic Displacement	
		and High-Angle Elastic Scattering	406
	B.3	Lenz-Model Elastic and Inelastic Cross Sections	406
	B.4	Simulation of a Plural-Scattering Distribution	407
	B.5	Fourier-Log Deconvolution	408
	B.6	Maximum-Likelihood Deconvolution	409
	B.7	Drude Simulation of a Low-Loss Spectrum	409
	B.8	Kramers–Kronig Analysis	410
	B.9	Kröger Simulation of a Low-Loss Spectrum	412
	B .10) Core-Loss Simulation	412
	B.1	I Fourier Ratio Deconvolution	413
	B.12	2 Incident-Convergence Correction	414
	B.13	3 Hydrogenic K-Shell Cross Sections	414
	B.14	4 Modified-Hydrogenic L-Shell Cross Sections	415
	B.1:	5 Parameterized K-, L-, M-, N-, and O-Shell	
		Cross Sections	416
	B.10	6 Measurement of Absolute Specimen Thickness	416
	B.1′	7 Total Inelastic and Plasmon Mean Free Paths	417
	B.18	Constrained Power-Law Background Fitting	417
Appendix (C Plas	smon Energies and Inelastic Mean Free Paths	419

Appendix D	Inner-Shell Energies and Edge Shapes	423
Appendix E	Electron Wavelengths, Relativistic Factors, and Physical Constants	427
Appendix F	Options for Energy-Loss Data Acquisition	429
References .		433
Index		485