Unsteady Combustor Physics

Tim C. Lieuwen

Georgia Institute of Technology

Detailed Contents

Introduction			page xiii
Ov	ervie	v of the Book	xvii
1	Overview and Basic Equations		
	1.1	Thermodynamic Relations in a Multicomponent Perfect Gas	1
	1.2	Continuity Equation	2
	1.3	Momentum Equation	3
	1.4	Species Conservation Equation	6
	1.5	Energy Equation	7
	1.6	Nomenclature	10
		1.6.1 Latin Alphabet	11
		1.6.2 Greek Alphabet	13
		1.6.3 Subscripts	14
		1.6.4 Superscripts	14
		1.6.5 Other Symbols	14
	EXE	RCISES	15
	REF	ERENCES	16
2	De	composition and Evolution of Disturbances	17
	2.1	Descriptions of Flow Perturbations	
	2.2	Small-Amplitude Propagation in Uniform, Inviscid Flows	21
		2.2.1 Decomposition Approach	21
		2.2.2 Comments on Decomposition	25
		2.2.3 Molecular Transport Effects on Decomposition	28
	2.3	Modal Coupling Processes	28
		2.3.1 Coupling through Boundary Conditions	28
		2.3.2 Coupling through Flow Inhomogeneities	29
		2.3.3 Coupling through Nonlinearities	31
	2.4	Energy Density and Energy Flux Associated with Disturbance	
		Fields	33
	2.5	Linear and Nonlinear Stability of Disturbances	38
		2.5.1 Linearly Stable/Unstable Systems	39

Detailed Contents

		2.5.2	Nonlinearly Unstable Systems	41
		2.5.3	Forced and Limit Cycling Systems	43
			2.5.3.1 Example: Forced Response of Lightly Damped,	
			Linear Systems	44
			2.5.3.2 Example: Limit Cycling Systems	45
			2.5.3.3 Example: Forced Response of Limit Cycling	
			Systems	45
			2.5.3.4 Nonlinear Interactions between Multiple	
			Oscillators	46
	EXE	RCISE	S	47
	REF	ERENG	CES	48
3	Hve	drodvi	namic Flow Stability I: Introduction	50
	-	•	nal Modes in Parallel Flows: Basic Formulation	51
			aral Results for Temporal Instability	53
	5.2		Necessary Conditions for Temporal Instability	53
			Growth Rate and Disturbance Propagation Speed Bounds	58
	22		ective and Absolute Instability	58 60
			nded Example: Spatial Mixing Layer	63
			al Stability and Nonparallel Flows	67
		RCISE		68
		EREN	_	08 70
	KEF	EKEIN	LE3	70
4	Hye	drody	namic Flow Stability II: Common Combustor Flow Fields	72
	4.1	Free	Shear Layers	75
		4.1.1	Flow Stability and Unsteady Structure	77
		4.1.2	Effects of Harmonic Excitation	80
	4.2		es and Bluff Body Flow Fields	83
		4.2.1	Parallel Flow Stability Analysis	85
			Bluff Body Wake	87
			Separated Shear Layer	88
		4.2.4	Effects of Harmonic Excitation	90
	4.3	Jets		91
			Parallel Flow Stability Analysis	93
		4.3.2	Constant Density Jet Dynamics	95
		4.3.3	Effects of Harmonic Excitation	96
		4.3.4	Jets in Cross Flow	97
	4.4	Swirl	ing Jets and Wakes	101
		4.4.1	Vortex Breakdown	103
			Swirling Jet and Wake Dynamics	106
		4.4.3	Effects of Harmonic Excitation	108
	4.5		ward-Facing Steps and Cavities	110
		4.5.1	Parallel Flow Stability Analysis	111
		4.5.2	Unsteady Flow Structure	113
	EXE	RCISE	S	115
	REF	EREN	CES	115

5	Acc	oustic	Wave Propagation I – Basic Concepts	124		
	5.1	Trave	eling and Standing Waves	125		
	5.2	Boun	Boundary Conditions: Reflection Coefficients and Impedance			
	5.3	Natur	ral Modes of Simple Geometries	134		
		5.3.1	One-Dimensional Modes	135		
		5.3.2	Multidimensional Rectangular Duct Modes	139		
		5.3.3	Circular Duct Modes	141		
		5.3.4	Lumped Elements and Helmholtz Resonators	144		
		5.3.5	Convective Modes	145		
	5.4	Force	ed Oscillations	146		
		5.4.1	One-Dimensional Forcing and Resonance	146		
		5.4.2	Forced Oscillations in Ducts and Cutoff Modes	148		
	EXE	RCISE	S	152		
	REF	ERENC	CES	153		
6	Ac	oustic	Wave Propagation II – Heat Release, Complex			
			y, and Mean Flow Effects	154		
		-	duction	154		
			a Flow Effects	154		
	0.2		Mean Flow Effects on Wave Propagation	158		
			Mean Flow Effects on Boundary Conditions	1.50		
	6.3		ible Temperature Effects	161		
	0.0		Example Problem: Wave Reflection and Transmission	101		
		0.011	through Variable Temperature Region	165		
		6.3.2	Example Problem: Natural Frequencies of a Variable	200		
			Temperature Region	167		
	6.4	Varia	able Area Effects	168		
			Baseline Results	169		
			Isentropic Nozzles/ Diffusers and Acoustic/ Entropy			
			Coupling	170		
		6.4.3	Unsteady Vorticity Generation and Acoustic Damping	173		
	6.5		istic Damping Processes	176		
			eady Heat Release Effects	177		
			Thermoacoustic Stability Model Problem	179		
			Further Discussion of Thermoacoustic Instability Trends	183		
	6.7	Nonli	inear Effects and Limit Cycles	186		
		6.7.1	Formulation of Modal and Amplitude Equations	187		
			6.7.1.1 Modal Equations	187		
			6.7.1.2 Derivation of Modal Amplitude Equations	189		
			6.7.1.3 Example Application of van der Pol			
			Decomposition and Method of Averaging	190		
		6.7.2	Sources of Nonlinearities	191		
			6.7.2.1 Gas Dynamical Nonlinearities	191		
			6.7.2.2 Combustion Process Nonlinearities	193		
			6.7.2.3 Boundary-Induced Nonlinearities	193		
	EXE	ERCISE	S	194		
	REF	FEREN	CES	195		

7	Fla	ame-Flow Interactions	199	
	7.1	Premixed Flame Jump Conditions	200	
		7.1.1 Formulation	200	
		7.1.2 Velocity and Pressure Relations across the Flame	202	
		7.1.3 Vorticity Relations across the Flame	206	
		7.1.3.1 General Considerations for a Prescribed Flame		
		Position	206	
		7.1.3.2 Considerations for a Coupled Flame and Flow Field	211	
		7.1.3.3 Flame Influences on Random Turbulent		
		Fluctuations	215	
	7.2	Stretching of Material and Flame Surfaces	215	
		7.2.1 Stretching of Material Surfaces	215	
		7.2.2 Premixed Flame Stretch	216	
		7.2.3 Example Problem: Stretching of Material Line by a Vortex	217	
	7.3	Influence of Premixed Flames on the Approach Flow	218	
		ERCISES	222	
	REI	FERENCES	223	
8	Ign	lition	225	
	8.1	Overview	225	
	8.2	Autoignition	227	
		8.2.1 Ignition of Homogeneous, Premixed Reactants	227	
		8.2.2 Effects of Losses and Flow Inhomogeneity	230	
		8.2.2.1 Model Problem Illustrating Convective Loss		
		Effects	230	
		8.2.2.2 Diffusive Loss Effects on Ignition	235	
	~ -	8.2.2.3 Ignition Times in Inhomogeneous Mixtures	236	
		Forced Ignition	238	
		ERCISES	243	
	REF	FERENCES	243	
9		Internal Flame Processes		
	9.1	Premixed Flame Overview	248	
		9.1.1 Premixed Flame Structure	248	
	~ ~	9.1.2 Premixed Flame Dependencies	251	
	9.2	Premixed Flame Stretch and Extinction	253	
		9.2.1 Overview	253	
		9.2.2 Expressions for Flame Stretch	256	
		9.2.3 Weak Stretch Effects	257	
		9.2.4 Strong Stretch Effects, Consumption and Displacement		
	03	Speeds, and Extinction	259	
	9.5 9.4	Premixed Flames: Unsteady Effects Non-Premixed Flame Overview	263	
		Finite Rate Effects in Non-Premixed Flames	267	
		Edge Flames and Flame Spreading	270	
	2.0	9.6.1 Overview	273	
		9.6.2 Buckmaster's Edge Flame Model Problem	273	
			275	

	9	.6.3 E	dge Flame Velocities	278
	9	.6.4 C	conditions at the Flame Edge	281
	9	.6.5 In	mplications on Flame Spread after Ignition	282
	9.7 In	ntrinsi	c Flame Instabilities	283
	EXER	CISES		285
	REFER	RENCE	S	286
10	Flam	e Stab	ilization, Flashback, Flameholding, and Blowoff	293
	10.1	Flasht	ack and Flameholding	293
		10.1.1	Flame Propagation in the Core Flow	294
		10.1.2	Boundary Layer Flashback	296
			10.1.2.1 Basic Considerations Influencing Flashback	
			Limits	296
			10.1.2.2 Heat Release and Stretch Effects	299
			Stabilization and Blowoff	301
		10.2.1	Basic Effects in Premixed Flames: Kinematic Balance	
			between Flow and Burning Velocities	303
			Stretch Rates for Shear Layer Stabilized Flames	305
		10.2.3	Product Recirculation Effects on Flame Stabilization	
			and Blowoff	309
		10.2.4	Nonpremixed Flame Liftoff and Blowoff	312
	REFI	ERENC	ES	313
11	Force	ed Res	sponse I – Flamelet Dynamics	317
	11.1	Overv	view of Length/Time Scales	317
		11.1.1	Premixed Flame Interactions with Broadband	
			Disturbance Fields	318
		11.1.2	Flame Interactions with Narrowband Velocity	
			Disturbance Fields	322
	11.2		mics of Premixed Flame Sheets	325
		11.2.1	Formulation and Model Problems	325
			11.2.1.1 Flat Flames, Flashback, and Blowoff	327
			11.2.1.2 Attached Steady State Flames	327
			11.2.1.3 Attached Transient Flames	328
		11.2.2	Linearized Dynamics of Constant-Burning-Velocity	
			Flames	330
			11.2.2.1 Linearized Formulations	330
			11.2.2.2 Flame Dynamics with Tangential Flow	331
			11.2.2.3 Example: Attached Flame Excited by a	
			Harmonically Oscillating, Convecting	224
			Disturbance	334
			11.2.2.4 Example: Turbulent Flow Disturbances	227
			Exciting Flame with No Tangential Flow	337
			11.2.2.5 Example: Turbulent Flow Disturbances	240
			Exciting Flame with Tangential Flow	340
		11.2.3	Nonlinear Flame Front Dynamics	342
			11.2.3.1 Kinematic Restoration – Overview	343

Detailed Contents

		11.2.3.2 Nonlinear Effects on Harmonically Forced,			
		Anchored Flames with Tangential Flow	345		
	11.3	Dynamics of Non-Premixed Flame Sheets	347		
		11.3.1 Formulation and Observations	347		
		11.3.2 Example Problem: Mixing Layer	348		
		11.3.3 Example Problem: Transient Stagnation Flame	351		
		11.3.4 Example Problem: Isothermal Non-Premixed and			
		Premixed Flame Rollup by a Vortex	352		
		11.3.5 Example Problem: Harmonic Forcing of a Confined,			
		Overventilated Flame	354		
	EXERCISES				
	REF	ERENCES	361		
12	Forc	ed Response II – Heat Release Dynamics	364		
	12.1	Overview of Forced Flame Response Mechanisms	364		
	12.2	Premixed Flames – Linear Dynamics	370		
		12.2.1 Formulation	370		
		12.2.2 Velocity Coupled Linear Flame Response	371		
		12.2.3 Equivalence Ratio Coupling	374		
	12.3	Harmonically Forced Premixed Flames – Nonlinear Effects	375		
		12.3.1 Kinematic Restoration	376		
		12.3.2 Stabilization Point Dynamics	379		
		12.3.3 Time-Averaged Flame and Flow Field	380		
		12.3.4 Geometry and Spatial Flame Area Distribution	381		
		12.3.5 Mass Burning Rate and Heat of Reaction Variations	381		
	12.4	Broadband Excitation and Turbulent Flame Speeds	382		
		12.4.1 Disturbance Impacts on Time-Averaged Burning Rates	383		
		12.4.2 Heat Release Fluctuations Induced by Turbulent Flows	387		
		12.4.3 Broadband Combustion Noise	391		
	EXERCISES				
	REF	ERENCES	395		
Inde	ex		401		