Statistical Principles for the Design of Experiments

R. Mead University of Reading

S. G. Gilmour University of Southampton

A. Mead University of Warwick

Contents

Preface		<i>page</i> xi
Part	I Overture	
1	Introduction	3
1.1	Why a statistical theory of design?	3
1.2	History, computers and mathematics	4
1.3	The influence of analysis on design	5
1.4	Separate consideration of units and treatments	6
1.5	The resource equation	7
2	Elementary ideas of blocking: the randomised complete	
	block design	9
2.1	Controlling variation between experimental units	9
2.2	The analysis of variance identity	12
2.3	Estimation of variance and the comparison of treatment means	18
2.4	Residuals and the meaning of error	22
2.5	The random allocation of treatments to units	24
2.6	Practical choices of blocking patterns	26
3	Elementary ideas of treatment structure	29
3.1	Choice of treatments	29
3.2	Factorial structure	29
3.3	Models for main effects and interactions	30
3.4	The analysis of variance identity	33
3.5	Interpretation of main effects and interactions	36
3.6	Advantages of factorial structure	38
3.7	Treatment effects and treatment models	40
4	General principles of linear models for the analysis of	
	experimental data	42
4.1	Introduction and some examples	42
4.2	The principle of least squares and least squares estimators	43
4.3	Properties of least squares estimators	46

Contents	
Contents	

4.4	Overparameterisation, constraints and practical solution of least	
	squares equations	49
4.5	Subdividing the parameters; extra SS	55
4.6	Distributional assumptions and inferences	60
4.7	Contrasts, treatment comparisons and component SS	62
4.8	Covariance – extension of linear design models	66
4.9	Computers for analysing experimental data	79
	Appendix to Chapter 4	87
4.A2	Least squares estimators for linear models	87
4.A3	Properties of least squares estimators	88
4.A4	Overparameterisation and constraints	90
4.A5	Partitioning the parameter vector and the extra SS principle	94
4.A6	Distributional assumptions and inferences	96
4.A7	Treatment comparisons and component SS	100
4.A8	The general theory of covariance analysis	102

Part II First subject

5	Experimental units	107
5.0	Preliminary examples	107
5.1	Different forms of basic experimental units	109
5.2	Experimental units as collections	113
5.3	A part as the unit and sequences of treatments	115
5.4	Multiple levels of experimental units	118
5.5	Time as a factor and repeated measurements	120
5.6	Protection of units, randomisation restrictions	121
6	Replication	124
6.0	Preliminary example	124
6.1	The need for replication	124
6.2	The completely randomised design	125
6.3	Different levels of variation	128
6.4	Identifying and allowing for different levels of variation	132
6.5	How much replication?	136
7	Blocking and control	142
7.0	Preliminary examples	142
7.1	Design and analysis for very simple blocked experiments	143
7.2	Design principles in blocked experiments	146
7.3	The analysis of block-treatment designs	153
7.4	BIB designs and classes of less balanced designs	159
7.5	Orthogonality, balance and the practical choice of design	164
7.6	Experimental designs for large-scale variety trials	173

Contents			
8	Multiple blocking systems and cross-over designs	182	
8.0	Preliminary examples	182	
8.1	Latin square designs and Latin rectangles	182	
8.2	Multiple orthogonal classifications and sequences of experiments	186	
8.3	Row-and-column designs with more treatments than replicates	188	
8.4	Three-dimensional designs	199	
8.5	The practical choice of row-and-column design	201	
8.6	Cross-over designs – time as a blocking factor	204	
8.7	Cross-over designs for residual or interaction effects	207	
9	Multiple levels of information	218	
9.0	Preliminary examples	218	
9.1	Identifying multiple levels in data	218	
9.2	The use of multiple levels of information	220	
9.3	Random effects and mixed models	227	
9.4	Analysis of multiple level data using REML	229	
9.5	Multiple blocking systems	230	
10	Randomisation	233	
10.1	What is the population?	233	
10.2	Random treatment allocation	234	
10.3	Randomisation tests	236	
10.4	Randomisation theory of the analysis of experimental data	241	
10.5	Practical implications of the two theories of analysis of		
	experimental data	246	
10.6	Practical randomisation	248	
11	Restricted randomisation	256	
11.0	Preliminary example	256	
11.1	Time-trend resistant run orders and designs	256	
11.2	Modelling spatial variation	257	
11.3	Neighbour balance	260	
11.4	Advantages and disadvantages of restricting randomisation	261	
11.5	Ignoring blocking in the data analysis	263	
11.6	Covariance or blocking	264	
11.7	Sequential allocation of treatments in clinical trials	266	

Part III Second subject

12	Experimental objectives, treatments and treatment structures	275
12.0	Preliminary examples	275
12.1	Different questions and forms of treatments	275
12.2	Comparisons between treatments	277
12.3	Presentation of results	282

12.4	Qualitative or quantitative factors	283
12.5	Treatment structures	289
12.6	Incomplete structures and varying replication	294
12.7	Treatments as a sample	298
12.8	Screening and selection experiments	299
13	Factorial structure and particular forms of effects	305
13.0	Preliminary example	305
13.1	Factors with two levels only	305
13.2	Improved yield comparisons in terms of effects	310
13.3	Analysis by considering sums and differences	315
13.4	Factors with three or more levels	319
13.5	The use of only a single replicate	324
13.6	Analysis of unreplicated factorials	327
14	Fractional replication	334
14.0	Preliminary examples	334
14.1	The use of a fraction of a complete factorial experiment	335
14.2	Half-replicates of 2^n factorials	336
14.3	Simple fractions for factors with more than two levels	340
14.4	Smaller fractions for 2^n structures	345
14.5	Irregular fractions for 2^n structures	349
14.6	Other fractions for three-level factors and for mixed levels	353
14.7	Very small fractions for main effect estimation	359
15	Incomplete block size for factorial experiments	363
15.0	Preliminary examples	363
15.1	Small blocks and many factorial combinations	363
15.2	Factors with a common number of levels	370
15.3	Incompletely confounded effects	375
15.4	Partial confounding	378
15.5	Confounding for general block size and factor levels	389
15.6	The negative approach to confounding for two-level factors	396
15.7	Confounding theory for other factorial structures	402
15.8	Confounding in fractional replicates	412
15.9	Confounding in row-and-column designs	417
16	Quantitative factors and response functions	425
16.0	Preliminary examples	425
16.1	The use of response functions in the analysis of data	425
16.2	Design objectives	429
16.3	Specific parameter estimation	430
16.4	Optimal design theory	437
16.5	Discrimination	439

Contents

16.6	Designs for competing criteria	440
16.7	Systematic designs	443
4 100		
17	Multifactorial designs for quantitative factors	448
17.0	Preliminary examples	448
17.1	Experimental objectives	448
17.2	Response surface designs based on factorial treatment	
	structures	451
17.3	Prediction properties of response surface designs	456
17.4	Lack of fit and confirmatory runs	460
17.5	Blocking response surface designs	461
17.6	Experiments with mixtures	464
17.7	Non-linear response surfaces	468
18	Split-unit designs	475
18.0	Preliminary examples	475
18.1	The practical need for split units	475
18.2	Advantages and disadvantages of split-unit designs	482
18.3	Extensions of the split-unit idea	484
18.4	Identification of multiple strata designs	493
18.5	Systematic treatment variation within main units	496
18.6	The split-unit design as an example of confounding	498
18.7	Non-orthogonal split-unit designs	502
18.8	Linked experiments	506
Part	IV Coda	
19	Multiple experiments and new variation	513
19.1	The need for additional variation	513
19.2	Planned replication of experiments	514
19.3	Introducing additional factors in experiments	521

19.4 Practical context experiments

19.5	Combined	experimental	analysis	
	00111011104	•		

20	Sequential aspects of experiments and experimental		
	programmes	528	
20.1	Experimentation is sequential	528	
20.2	Using prior information in designing experiments	529	
20.3	Sequences of experiments in selection programmes	530	
20.4	Sequences of experiments in screening programmes	532	
20.5	Sequences of experiments in pharmaceutical trials	532	
20.6	Sequential nature within clinical trials	534	
20.7	Sequences of experiments in response optimisation	535	
20.8	Continuous on-line experimentation	537	

0	Designing useful experiments	538
0.0	Some more real problems	538
0.1	Design principles or practical design	539
0.2	Resources and experimental units	540
0.3	Treatments and detailed objectives	542
0.4	The resource equation and the estimation of the error variance	545
0.5	The marriage of resources and treatments	546
0.6	Three particular problems	551
0.7	Computer design packages and catalogues of designs	558
Refere	ences	565
Index		568