Bayesian Reasoning and Machine Learning

David Barber
University College London

CONTENTS

Preface xv
List of notation xx
BRMLTOOLBOX xxi
I Inference in probabilistic models
1 Probabilistic reasoning3
1.1 Probability refresher
1.1.1 Interpreting conditionalprobability1.1.2 Probability tables
1.2 Probabilistic reasoning
1.3 Prior, likelihood and posterior
1.3.1 Two dice: what were theindividual scores?
1.4 Summary
1.5 Code
1.6 Exercises
2 Basic graph concepts
2.1 Graphs
2.2 Numerically encoding graphs
2.2.1 Edge list
2.2.2 Adjacency matrix
2.2.3 Clique matrix
2.3 Summary
2.4 Code
2.5 Exercises
3 Belief networks 29
3.1 The benefits of structure
3.1.1 Modelling independencies
3.1.2 Reducing the burden ofspecification
3.2 Uncertain and unreliable evidence
3.2.1 Uncertain evidence
3.2.2 Unreliable evidence
3.3 Belief networks
22
3.3.1 Conditional independence
3.3.2 The impact of collisions
3.3.3 Graphical path manipulations for independence
3.3.4 d-separation
3.3.5 Graphical and distributional in/dependence
3.3.6 Markov equivalence in belief networks
3.3.7 Belief networks have limited expressibility
3.4 Causality
3.4.1 Simpson's paradox
3.4.2 The do-calculus
3.4.3 Influence diagrams and thedo-calculus
3.5 Summary
3.6 Code
3.7 Exercises
4 Graphical models58
4.1 Graphical models
4.2 Markov networks
4.2.1 Markov properties
4.2.2 Markov random fields
4.2.3 Hammersley-Clifford theorem
4.2.4 Conditional independenceusing Markov networks
4.2.5 Lattice models
4.3 Chain graphical models
4.4 Factor graphs
4.4.1 Conditional independence in factor graphs
4.5 Expressiveness of graphicalmodels
4.6 Summary
4.7 Code
5 Efficient inference in trees 77
5.1 Marginal inference
5.1.1 Variable elimination in a
Markov chain and message passing
5.1.2 The sum-product algorithm on factor graphs
5.1.3 Dealing with evidence
5.1.4 Computing the marginal likelihood
5.1.5 The problem with loops
5.2 Other forms of inference
5.2.1 Max-product
5.2.2 Finding the N most probable states
5.2.3 Most probable path and shortest path
5.2.4 Mixed inference
5.3 Inference in multiply connected graphs
5.3.1 Bucket elimination
5.3.2 Loop-cut conditioning
5.4 Message passing for continuous distributions
5.5 Summary
5.6 Code
5.7 Exercises
6 The junction tree algorithm 102
6.1 Clustering variables
6.1.1 Reparameterisation
6.2 Clique graphs
6.2.1 Absorption
6.2.2 Absorption schedule on clique trees
6.3 Junction trees
6.3.1 The running intersection property
6.4 Constructing a junction tree forsingly connected distributions
6.4.1 Moralisation
6.4.2 Forming the clique graph
6.4.3 Forming a junction tree from a clique graph
6.4.4 Assigning potentials tocliques
6.5 Junction trees for multiply connected distributions
6.5.1 Triangulation algorithms
6.6 The junction tree algorithm
6.6.1 Remarks on the JTA
6.6.2 Computing the normalisation constant of a distribution
6.6.3 The marginal likelihood
6.6.4 Some small JTA examples
6.6.5 Shafer-Shenoy propagation
6.7 Finding the most likely state
6.8 Reabsorption: converting a junction tree to a directed network
6.9 The need for approximations 6.9.1 Bounded width junction trees

6.10 Summary

6.11 Code
6.12 Exercises

7 Making decisions
7.1 Expected utility
7.1.1 Utility of money
7.2 Decision trees
7.3 Extending Bayesian networks for decisions

7.3.1 Syntax of influence
diagrams
7.4 Solving influence diagrams
7.4.1 Messages on an ID
7.4.2 Using a junction tree
7.5 Markov decision processes
7.5.1 Maximising expected utility by message passing
7.5.2 Bellman's equation
7.6 Temporally unbounded MDPs
7.6.1 Value iteration
7.6.2 Policy iteration
7.6.3 A curse of dimensionality
7.7 Variational inference and planning
7.8 Financial matters
7.8.1 Options pricing and expected utility
$\begin{array}{ll}\text { 7.8.2 } & \begin{array}{l}\text { Binomial options pricing } \\ \text { model }\end{array} \\ \text { 7.8.3 } & \text { Optimal investment }\end{array}$
7.9 Further topics
7.9.1 Partially observable MDPs
7.9.2 Reinforcement learning
7.10 Summary
7.11 Code
7.12 Exercises

II Learning in probabilistic models

8 Statistics for machine learning 165
8.1 Representing data
8.1.1 Categorical
8.1.2 Ordinal
8.1.3 Numerical
8.2 Distributions
8.2.1 The Kullback-Leibler divergence $\operatorname{KL}(q \mid p)$
8.2.2 Entropy and information
8.3 Classical distributions
8.4 Multivariate Gaussian
8.4.1 Completing the square
8.4.2 Conditioning as system reversal
8.4.3 Whitening and centring
8.5 Exponential family
8.5.1 Conjugate priors
8.6 Learning distributions
8.7 Properties of maximum likelihood
8.7.1 Training assuming the correct model class
8.7.2 Training when the assumed model is incorrect
8.7.3 Maximum likelihood and the empirical distribution
8.8 Learning a Gaussian
8.8.1 Maximum likelihood training
8.8.2 Bayesian inference of the mean and variance
8.8.3 Gauss-gamma distribution
8.9 Summary
8.10 Code
8.11 Exercises
9 Learning as inference199
9.1 Learning as inference
9.1.1 Learning the bias of a coin
9.1.2 Making decisions
9.1.3 A continuum of parameters
9.1.4 Decisions based oncontinuous intervals
9.2 Bayesian methods and ML-II
9.3 Maximum likelihood training of belief networks
9.4 Bayesian belief network training
9.4.1 Global and local parameter independence
9.4.2 Learning binary variable tables using a Beta prior
9.4.3 Learning multivariatediscrete tables using aDirichlet prior
9.5 Structure learning
9.5.1 PC algorithm
9.5.2 Empirical independence
9.5.3 Network scoring
9.5.4 Chow-Liu trees
9.6 Maximum likelihood for
undirected models
9.6.1 The likelihood gradient
9.6.2 General tabular clique potentials
9.6.3 Decomposable Markov networks
9.6.4 Exponential form potentials
9.6.5 Conditional random fields
9.6.6 Pseudo likelihood
9.6.7 Learning the structure
9.7 Summary
9.8 Code
9.9 Exercises
10 Naive Bayes10.1 Naive Bayes and conditionalindependence
10.2 Estimation using maximumlikelihood
10.2.1 Binary attributes
10.2.2 Multi-state variables
10.2.3 Text classification
10.3 Bayesian naive Bayes
10.4 Tree augmented naive Bayes10.4.1 Learning tree augmentednaive Bayes networks
10.5 Summary
10.6 Code
10.7 Exercises
11 Learning with hidden variables 256
11.1 Hidden variables and missing data
11.1.1 Why hidden/missing variables can complicate proceedings
11.1.2 The missing at random assumption
11.1.3 Maximum likelihood
11.1.4 Identifiability issues
11.2 Expectation maximisation
11.2.1 Variational EM
11.2.2 Classical EM
11.2.3 Application to belief networks
11.2.4 General case
11.2.5 Convergence
11.2.6 Application to Markov networks
11.3 Extensions of EM11.3.1 Partial M-step
11.3.2 Partial E-step
11.4 A failure case for EM
11.5 Variational Bayes
11.5.1 EM is a special case ofvariational Bayes
11.5.2 An example: VB for theAsbestos-Smoking-Cancernetwork
11.6 Optimising the likelihood by gradient methods
11.6.1 Undirected models
11.7 Summary
11.8 Code
11.9 Exercises
12 Bayesian model selection284
12.1 Comparing models the Bayesian way
12.2 Illustrations: coin tossing
12.2.1 A discrete parameter space
12.2.2 A continuous parameter space
12.3 Occam's razor and Bayesian complexity penalisation
12.4 A continuous example: curve fitting
12.5 Approximating the modellikelihood
12.5.1 Laplace's method
12.5.2 Bayes information criterion
12.6 Bayesian hypothesis testing foroutcome analysis
12.6.1 Outcome analysis
12.6.2 $H_{\text {indep }}$: model likelihood
12.6.3 $H_{\text {same }}$: model likelihood
12.6.4 Dependent outcome analysis
12.6.5 Is classifier A better than B ?

12.7 Summary

12.8 Code

12.9 Exercises

III Machine learning

13 Machine learning concepts 305
13.1 Styles of learning
13.1.1 Supervised learning
13.1.2 Unsupervised learning
13.1.3 Anomaly detection
13.1.4 Online (sequential) learning
13.1.5 Interacting with theenvironment
13.1.6 Semi-supervised learning
13.2 Supervised learning
13.2.1 Utility and loss
13.2.2 Using the empiricaldistribution
13.2.3 Bayesian decision approach
13.3 Bayes versus empirical decisions
13.4 Summary
13.5 Exercises
14 Nearest neighbour classification 322
14.1 Do as your neighbour does
14.2 K-nearest neighbours
14.3 A probabilistic interpretation of nearest neighbours
14.3.1 When your nearest neighbour is far away
14.4 Summary
14.5 Code
14.6 Exercises
15 Unsupervised linear dimension reduction 329
15.1 High-dimensional spaces -
low-dimensional manifolds
15.2 Principal components analysis15.2.1 Deriving the optimal linearreconstruction
15.2.2 Maximum variancecriterion
15.2.3 PCA algorithm
15.2.4 PCA and nearestneighbours classification
15.3 High-dimensional data15.3.1 Eigen-decomposition for$N<D$
15.3.2 PCA via singular value decomposition
15.4 Latent semantic analysis15.4.1 Information retrieval
15.5 PCA with missing data15.5.1 Finding the principaldirections
15.5.2 Collaborative filtering using PCA with missing data
15.6 Matrix decomposition methods
15.6.1 Probabilistic latent semantic analysis
15.6.2 Extensions and variations
15.6.3 Applications of PLSA/NMF
15.7 Kernel PCA
15.8 Canonical correlation analysis15.8.1 SVD formulation
15.9 Summary
15.10 Code
15.11 Exercises
16 Supervised linear dimension reduction 359
16.1 Supervised linear projections
16.2 Fisher's linear discriminant
16.3 Canonical variates
16.3.1 Dealing with the nullspace
16.4 Summary
16.5 Code
16.6 Exercises
17 Linear models 367
17.1 Introduction: fitting a straight line
17.2 Linear parameter models for regression17.2.1 Vector outputs
17.2.2 Regularisation
17.2.3 Radial basis functions
17.3 The dual representation and kernels
17.3.1 Regression in the dual space
17.4 Linear parameter models for classification
17.4.1 Logistic regression
17.4.2 Beyond first-order gradient ascent
17.4.3 Avoiding overconfident classification
17.4.4 Multiple classes
17.4.5 The kernel trick for classification
17.5 Support vector machines
17.5.1 Maximum margin linear classifier
17.5.2 Using kernels
17.5.3 Performing the optimisation
17.5.4 Probabilistic interpretation
17.6 Soft zero-one loss for outlier robustness
17.7 Summary
17.8 Code
17.9 Exercises

18 Bayesian linear models
18.1 Regression with additive Gaussian noise
18.1.1 Bayesian linear parameter models
18.1.2 Determining hyperparameters: ML-II
18.1.3 Learning the hyperparameters using EM
18.1.4 Hyperparameter optimisation: using the gradient
18.1.5 Validation likelihood
18.1.6 Prediction and model averaging
18.1.7 Sparse linear models
18.2 Classification
18.2.1 Hyperparameter optimisation
18.2.2 Laplace approximation
18.2.3 Variational Gaussian approximation
18.2.4 Local variational approximation
18.2.5 Relevance vector machine for classification
18.2.6 Multi-class case
18.3 Summary
18.4 Code
18.5 Exercises
19 Gaussian processes412
19.1 Non-parametric prediction
19.1.1 From parametric to non-parametric
19.1.2 From Bayesian linear models to Gaussian processes
19.1.3 A prior on functions
19.2 Gaussian process prediction
19.2.1 Regression with noisy training outputs
19.3 Covariance functions19.3.1 Making new covariancefunctions from old
19.3.2 Stationary covariancefunctions
19.3.3 Non-stationary covariance functions
19.4 Analysis of covariance functions
19.4.1 Smoothness of the functions
19.4.2 Mercer kernels
19.4.3 Fourier analysis forstationary kernels
19.5 Gaussian processes forclassification
19.5.1 Binary classification
19.5.2 Laplace's approximation
19.5.3 Hyperparameter optimisation
19.5.4 Multiple classes
19.6 Summary
19.7 Code
19.8 Exercises
20 Mixture models 432
20.1 Density estimation using mixtures
20.2 Expectation maximisation formixture models
20.2.1 Unconstrained discrete tables
20.2.2 Mixture of product of Bernoulli distributions
20.3 The Gaussian mixture model
20.3.1 EM algorithm
20.3.2 Practical issues
20.3.3 Classification usingGaussian mixture models
20.3.4 The Parzen estimator
20.3.5 K-means
20.3.6 Bayesian mixture models
20.3.7 Semi-supervised learning
20.4 Mixture of experts
20.5 Indicator models
20.5.1 Joint indicator approach: factorised prior
20.5.2 Polya prior
20.6 Mixed membership models
20.6.1 Latent Dirichlet allocation
20.6.2 Graph-based representations of data
20.6.3 Dyadic data
20.6.4 Monadic data
20.6.5 Cliques and adjacency matrices for monadic binary data
20.7 Summary
20.8 Code
20.9 Exercises

21 Latent linear models 462
21.1 Factor analysis
21.1.1 Finding the optimal bias
21.2 Factor analysis: maximum
likelihood
21.2.1 Eigen-approach likelihood optimisation
21.2.2 Expectation maximisation
21.3 Interlude: modelling faces
21.4 Probabilistic principal components analysis
21.5 Canonical correlation analysis and factor analysis
21.6 Independent components analysis
21.7 Summary
21.8 Code
21.9 Exercises

22 Latent ability models
22.1 The Rasch model
22.1.1 Maximum likelihood training
22.1.2 Bayesian Rasch models
22.2 Competition models
22.2.1 Bradley-Terry-Luce model
22.2.2 Elo ranking model
22.2.3 Glicko and TrueSkill
22.3 Summary
22.4 Code
22.5 Exercises
IV Dynamical models
23 Discrete-state Markov models489
23.1 Markov models
23.1.1 Equilibrium and stationary distribution of a Markov chain
23.1.2 Fitting Markov models
23.1.3 Mixture of Markov models
23.2 Hidden Markov models
23.2.1 The classical inference problems
23.2.2 Filtering $p\left(h_{t} \mid v_{1: t}\right)$
23.2.3 Parallel smoothing $p\left(h_{t} \mid v_{1: T}\right)$
23.2.4 Correction smoothing
23.2.5 Sampling from $p\left(h_{\mathrm{l}: T} \mid v_{1: T}\right)$
23.2.6 Most likely joint state
23.2.7 Prediction
23.2.8 Self-localisation and kidnapped robots
23.2.9 Natural language models
23.3 Learning HMMs
23.3.1 EM algorithm
23.3.2 Mixture emission
23.3.3 The HMM-GMM
23.3.4 Discriminative training
23.4 Related models
23.4.1 Explicit duration model
23.4.2 Input-output HMM
23.4.3 Linear chain CRFs
23.4.4 Dynamic Bayesian networks
23.5 Applications
23.5.1 Object tracking
23.5.2 Automatic speech recognition
23.5.3 Bioinformatics
23.5.4 Part-of-speech tagging
23.6 Summary
23.7 Code
23.8 Exercises
24 Continuous-state Markov models 520
24.1 Observed linear dynamical systems
24.1.1 Stationary distribution with noise

24.2 Auto-regressive models

24.2.1 Training an AR model
24.2.2 AR model as an OLDS
24.2.3 Time-varying AR model
24.2.4 Time-varying variance
AR models
24.3 Latent linear dynamical systems
24.4 Inference
24.4.1 Filtering
24.4.2 Smoothing: Rauch-Tung-Striebel correction method

24.4.3 The likelihood

24.4.4 Most likely state
24.4.5 Time independence and
Riccati equations
24.5 Learning linear dynamical systems
24.5.1 Identifiability issues
24.5.2 EM algorithm
24.5.3 Subspace methods
24.5.4 Structured LDSs
24.5.5 Bayesian LDSs
24.6 Switching auto-regressive models
24.6.1 Inference
24.6.2 Maximum likelihood learning using EM
24.7 Summary
24.8 Code
24.9 Exercises

25 Switching linear dynamical systems

547
25.1 Introduction
25.2 The switching LDS
25.2.1 Exact inference is computationally intractable
25.3 Gaussian sum filtering
25.3.1 Continuous filtering
25.3.2 Discrete filtering
25.3.3 The likelihood $p\left(\mathbf{v}_{1: T}\right)$
25.3.4 Collapsing Gaussians
25.3.5 Relation to other methods
25.4 Gaussian sum smoothing
25.4.1 Continuous smoothing
25.4.2 Discrete smoothing
25.4.3 Collapsing the mixture
25.4.4 Using mixtures in smoothing
25.4.5 Relation to other methods
25.5 Reset models
25.5.1 A Poisson reset model
25.5.2 Reset-HMM-LDS
25.6 Summary
25.7 Code
25.8 Exercises
26 Distributed computation568
26.1 Introduction
26.2 Stochastic Hopfield networks
26.3 Learning sequences
26.3.1 A single sequence
26.3.2 Multiple sequences
26.3.3 Boolean networks
26.3.4 Sequence disambiguation
26.4 Tractable continuous latent
variable models
26.4.1 Deterministic latent variables
26.4.2 An augmented Hopfield network
26.5 Neural models
26.5.1 Stochastically spikingneurons
26.5.2 Hopfield membrane potential
26.5.3 Dynamic synapses
26.5.4 Leaky integrate and fire models
26.6 Summary
26.7 Code
26.8 Exercises
V Approximate inference
27 Sampling587
27.1 Introduction
27.1.1 Univariate sampling
27.1.2 Rejection sampling
27.1.3 Multivariate sampling
27.2 Ancestral sampling
27.2.1 Dealing with evidence
27.2.2 Perfect sampling for a Markov network
27.3 Gibbs sampling
27.3.1 Gibbs sampling as a Markov chain
27.3.2 Structured Gibbs sampling
27.3.3 Remarks
27.4 Markov chain Monte Carlo (MCMC)
27.4.1 Markov chains
27.4.2 Metropolis-Hastings sampling
27.5 Auxiliary variable methods
27.5.1 Hybrid Monte Carlo (HMC)
27.5.2 Swendson-Wang (SW)
27.5.3 Slice sampling
27.6 Importance sampling
27.6.1 Sequential importancesampling
27.6.2 Particle filtering as anapproximate forward pass
27.7 Summary
27.8 Code
27.9 Exercises
28 Deterministic approximate inference617
28.1 Introduction
28.2 The Laplace approximation
28.3 Properties of Kullback-Leibler variational inference
28.3.1 Bounding thenormalisation constant
28.3.2 Bounding the marginallikelihood
28.3.3 Bounding marginal quantities
28.3.4 Gaussian approximationsusing KL divergence
28.3.5 Marginal and momentmatching properties ofminimising $\operatorname{KL}(p \mid q)$
28.4 Variational bounding using $\operatorname{KL}(q \mid p)$
28.4.1 Pairwise Markov random field
28.4.2 General mean-field equations
28.4.3 Asynchronous updatingguarantees approximationimprovement28.4.4 Structured variationalapproximation
28.5 Local and KL variational
approximations
28.5.1 Local approximation
28.5.2 KL variationalapproximation
28.6 Mutual information
maximisation: a KL

28.6.1 The information maximisation algorithm
 28.6.2 Linear Gaussian decoder

28.7 Loopy belief propagation
28.7.1 Classical BP on an undirected graph
28.7.2 Loopy BP as a variational procedure
28.8 Expectation propagation
28.9 MAP for Markov networks
28.9.1 Pairwise Markov networks
28.9.2 Attractive binary Markov networks
28.9.3 Potts model
28.10 Further reading
28.11 Summary
28.12 Code
28.13 Exercises

Appendix A: Background mathematics

655
A. 1 Linear algebra
A. 2 Multivariate calculus
A. 3 Inequalities
A. 4 Optimisation
A. 5 Multivariate optimisation
A. 6 Constrained optimisation using Lagrange multipliers
References
Index 689

Colour plate section between pp. 360 and 361

