SIXTH EDITION

Principles of Modern Chemistry

DAVID W. OXTOBY Pomona College

H.P. GILLIS University of California–Los Angeles

ALAN CAMPION The University of Texas at Austin

Images of orbitals in Chapters 4, 5, 6 and 8 contributed by

HATEM H. HELAL California Institute of Technology

KELLY P. GAITHER *The University of Texas at Austin*

Australia • Brazil • Canada • Mexico • Singapore • Spai United Kingdom • United States

Contents

Introduction to the Study of Modern Chemistry 1

CHAPTER

The Atom in Modern Chemistry 2

- 1.1 The Nature of Modern Chemistry 2
- 1.2 Macroscopic Methods for Classifying Matter 5
- 1.3 Indirect Evidence for the Existence of Atoms: Laws of Chemical Combination 8
- 1.4 The Physical Structure of Atoms 14
- 1.5 Imaging Atoms, Molecules, and Chemical Reactions 22

CHAPTER 2

Chemical Formulas, Chemical Equations, and Reaction Yields 29

- 2.1 The Mole: Weighing and Counting Molecules 30
- 2.2 Empirical and Molecular Formulas 34
- 2.3 Chemical Formula and Percentage Composition 35
- 2.4 Writing Balanced Chemical Equations 37
- 2.5 Mass Relationships in Chemical Reactions 39
- 2.6 Limiting Reactant and Percentage Yield 41

Chemical Bonding and Molecular Structure 52

CHAPTER 3

Chemical Bonding: The Classical Description 54

- 3.1 The Periodic Table 56
- 3.2 Forces and Potential Energy in Atoms 59
- 3.3 Ionization Energies and the Shell Model of the Atom 63
- 3.4 Electronegativity: The Tendency of Atoms to Attract Electrons 69
- 3.5 Forces and Potential Energy in Molecules: Formation of Chemical Bonds 72
- 3.6 Ionic Bonding 75
- 3.7 Covalent and Polar Covalent Bonding 78
- 3.8 Lewis Diagrams for Molecules 85
- 3.9 The Shapes of Molecules: Valence Shell Electron-Pair Repulsion Theory 92
- 3.10 Oxidation Numbers 97
- 3.11 Inorganic Nomenclature 100

CHAPTER Z,

Introduction to Quantum Mechanics 114

- 4.1 Preliminaries: Wave Motion and Light 116
- 4.2 Evidence for Energy Quantization in Atoms 119
- 4.3 The Bohr Model: Predicting Discrete Energy Levels 127
- 4.4 Evidence for Wave–Particle Duality 131
- 4.5 The Schrödinger Equation 141
- 4.6 Quantum Mechanics of Particle-in-a-Box Models 145
- 4.7 Quantum Harmonic Oscillator 155

CHAPTER 5

Quantum Mechanics and Atomic Structure 169

- 5.1 The Hydrogen Atom 171
- 5.2 Shell Model for Many-Electron Atoms 184
- 5.3 Aufbau Principle and Electron Configurations 189
- 5.4 Shells and the Periodic Table: Photoelectron Spectroscopy 194
- 5.5 Periodic Properties and Electronic Structure 198

CHAPTER 👩

Quantum Mechanics and Molecular Structure 211

- 6.1 Quantum Picture of the Chemical Bond 213
- **6.1.6 A Deeper Look** Nature of the Chemical Bond in H_2^+ 222
- 6.2 De-localized Bonds: Molecular Orbital Theory and the Linear Combination of Atomic 223
- **6.2.5 A Deeper Look** Potential Energy and Bond Formation in the LCAO Approximation 242
- 6.2.6 A Deeper Look Small Polyatomic Molecules 245
- 6.3 Photoelectron Spectroscopy for Molecules 247
- 6.4 Localized Bonds: The Valence Bond Model 252
- 6.5 Comparison of Linear Combination of Atomic Orbitals and Valence Bond Methods 261

CHAPTER 7

Bonding in Organic Molecules 275

- 7.1 Petroleum Refining and the Hydrocarbons 276
- 7.2 The Alkanes 277
- 7.3 The Alkenes and Alkynes 282
- 7.4 Aromatic Hydrocarbons 288
- 7.5 Fullerenes 290
- 7.6 Functional Groups and Organic Reactions 292
- 7.7 Pesticides and Pharmaceuticals 300

CHAPTER ጸ

Bonding in Transition Metal Compounds and Coordination Complexes 313

- 8.1 Chemistry of the Transition Metals 314
- 8.2 Bonding in Simple Molecules That Contain Transition Metals 318
- 8.3 Introduction to Coordination Chemistry 328
- 8.4 Structures of Coordination Complexes 334
- 8.5 Crystal Field Theory: Optical and Magnetic Properties 339
- 8.6 Optical Properties and the Spectrochemical Series 345
- 8.7 Bonding in Coordination Complexes 348

Kinetic Molecular Description of the States of Matter 362

CHAPTER 9

The Gaseous State 364

- 9.1 The Chemistry of Gases 365
- 9.2 Pressure and Temperature of Gases 367
- 9.3 The Ideal Gas Law 374
- 9.4 Mixtures of Gases 377
- 9.5 The Kinetic Theory of Gases 379
- 9.6 A Deeper Look Distribution of Energy among Molecules 386
- 9.7 Real Gases: Intermolecular Forces 388
- 9.8 A Deeper Look Molecular Collisions and Rate Processes 393

CHAPTER 10

Solids, Liquids, and Phase Transitions 409

- 10.1 Bulk Properties of Gases, Liquids, and Solids: Molecular Interpretation 410
- 10.2 Intermolecular Forces: Origins in Molecular Structure 415
- 10.3 Intermolecular Forces in Liquids 423
- 10.4 Phase Equilibrium 426
- 10.5 Phase Transitions 428
- 10.6 Phase Diagrams 430

CHAPTER

Solutions 441

- 11.1 Composition of Solutions 442
- 11.2 Nature of Dissolved Species 446
- 11.3 Reaction Stoichiometry in Solutions: Acid-Base Titrations 449
- 11.4 Reaction Stoichiometry in Solutions: Oxidation-Reduction Titrations 452
- 11.5 Phase Equilibrium in Solutions: Nonvolatile Solutes 458
- 11.6 Phase Equilibrium in Solutions: Volatile Solutes 467
- **11.7** Colloidal Suspensions 471

Equilibrium in Chemical Reactions 484

CHAPTER 2

Thermodynamic Processes and Thermochemistry 486

- 12.1 Systems, States, and Processes 488
- 12.2 The First Law of Thermodynamics: Internal Energy, Work, and Heat 491
- 12.3 Heat Capacity, Enthalpy, and Calorimetry 497
- 12.4 Illustrations of the First Law of Thermodynamics in Ideal Gas Processes 500
- 12.5 Thermochemistry 503
- 12.6 Reversible Processes in Ideal Gases 512

CHAPTER 3

Spontaneous Processes and Thermodynamic Equilibrium 529

- 13.1 The Nature of Spontaneous Processes 530
- 13.2 Entropy and Spontaneity: A Molecular Statistical Interpretation 533
- 13.3 Entropy and Heat: Experimental Basis of the Second Law of Thermodynamics 537
- **13.4 A Deeper Look** Carnot Cycles, Efficiency, and Entropy 540
- 13.5 Entropy Changes and Spontaneity 543
- 13.6 The Third Law of Thermodynamics 550
- 13.7 The Gibbs Free Energy 552

CHAPTER 2

Chemical Equilibrium 569

- 14.1 The Nature of Chemical Equilibrium 570
- 14.2 The Empirical Law of Mass Action 574
- 14.3 Thermodynamic Description of the Equilibrium State 580
- 14.4 The Law of Mass Action for Related and Simultaneous Equilibria 587
- 14.5 Equilibrium Calculations for Gas-Phase and Heterogeneous Reactions 591
- 14.6 The Direction of Change in Chemical Reactions: Empirical Description 597

- 14.7 The Direction of Change in Chemical Reactions: Thermodynamic Explanation 603
- 14.8 Distribution of a Single Species between Immiscible Phases: Extraction and Separation Processes 606

CHAPTER 15

Acid–Base Equilibria 625

- 15.1 Classifications of Acids and Bases 626
- 15.2 Properties of Acids and Bases in Aqueous Solutions: The Brønsted-Lowry Scheme 629
- 15.3 Acid and Base Strength 633
- 15.4 Equilibria Involving Weak Acids and Bases 639
- 15.5 Buffer Solutions 645
- 15.6 Acid-Base Titration Curves 649
- 15.7 Polyprotic Acids 654
- **15.8 A Deeper Look** Exact Treatment of Acid–Base Equilibria 658
- 15.9 Organic Acids and Bases: Structure and Reactivity 660

CHAPTER 16

Solubility and Precipitation Equilibria 677

- 16.1 The Nature of Solubility Equilibria 678
- 16.2 Ionic Equilibria between Solids and Solutions 681
- 16.3 Precipitation and the Solubility Product 684
- 16.4 The Effects of pH on Solubility 688
- 16.5 A Deeper Look Selective Precipitation of Ions 690
- 16.6 Complex Ions and Solubility 692

CHAPTER 7

Electrochemistry 705

- 17.1 Electrochemical Cells 706
- 17.2 The Gibbs Free Energy and Cell Voltage 710
- 17.3 Concentration Effects and the Nernst Equation 718
- 17.4 Batteries and Fuel Cells 723
- 17.5 Corrosion and Its Prevention 728
- 17.6 Electrometallurgy 730
- **17.7 A Deeper Look** Electrolysis of Water and Aqueous Solutions 735

UNIT V

Rates of Chemical and Physical Processes 748

CHAPTER 8

Chemical Kinetics 750

- 18.1 Rates of Chemical Reactions 751
- 18.2 Rate Laws 754
- 18.3 Reaction Mechanisms 761
- 18.4 Reaction Mechanisms and Rate 765
- 18.5 Effect of Temperature on Reaction Rates 770
- 18.6 A Deeper Look Reaction Dynamics 773
- 18.7 Kinetics of Catalysis 775

CHAPTER 19

Nuclear Chemistry 793

- 19.1 Mass-Energy Relationships in Nuclei 794
- 19.2 Nuclear Decay Processes 798
- 19.3 Kinetics of Radioactive Decay 803
- 19.4 Radiation in Biology and Medicine 807
- 19.5 Nuclear Fission 809
- 19.6 Nuclear Fusion and Nucleosynthesis 813

CHAPTER 20

Interaction of Molecules with Light 825

- 20.1 General Aspects of Molecular Spectroscopy 826
- 20.2 Vibrations and Rotations of Molecules: Infrared and Microwave Spectroscopy 829
- 20.3 Excited Electronic States: Electronic Spectroscopy of Molecules 835
- 20.4 Nuclear Magnetic Resonance Spectroscopy 842
- 20.5 Introduction to Atmospheric Photochemistry 845
- 20.6 Photosynthesis 851

Materials 862

CHAPTER 21

Structure and Bonding in Solids 864

- 21.1 Crystal Symmetry and the Unit Cell 865
- 21.2 Crystal Structure 871
- 21.3 Cohesion in Solids 875
- **21.4 A Deeper Look** Lattice Energies of Crystals 882
- 21.5 Defects and Amorphous Solids 884

CHAPTER 22

Inorganic Materials 895

- 22.1 Minerals: Naturally Occurring Inorganic Minerals 896
- 22.2 Properties of Ceramics 901
- 22.3 Silicate Ceramics 903
- 22.4 Nonsilicate Ceramics 908
- 22.5 Electrical Conduction in Materials 913
- 22.6 Band Theory of Conduction 917
- 22.7 Semiconductors 919
- 22.8 Pigments and Phosphors: Optical Displays 922

CHAPTER 23

Polymeric Materials and Soft Condensed Matter 929

- 23.1 Polymerization Reactions for Synthetic Polymers 930
- 23.2 Applications for Synthetic Polymers 934
- 23.3 Liquid Crystals 940
- 23.4 Natural Polymers 943

Appendices A.1

- A Scientific Notation and Experimental Error A.2
- B SI Units, Unit Conversions, Physics for General Chemistry A.9
- C Mathematics for General Chemistry A.21
- D Standard Chemical Thermodynamic Properties A.37
- E Standard Reaction Potentials at 25°C A.45
- F Physical Properties of the Elements A.47
- G Solutions to the Odd-Numbered Problems A.57

Index Glossary I.1