Modeling, Analysis and Optimization of Process and Energy Systems

F. Carl Knopf

Louisiana State University Baton Rouge, LA

Contents

PrefacexiiiConversion FactorsxviiList of Symbolsxix

1. Introduction to Energy Usage, Cost, and Efficiency

1.1	Energy Utilization in the United States 1
1.2	The Cost of Energy 1
1.3	Energy Efficiency 4
1.4	The Cost of Self-Generated versus Purchased
	Electricity 10
1.5	The Cost of Fuel and Fuel Heating
	Value 11
1.6	Text Organization 12
1.7	Getting Started 15

1.8 Closing Comments 16 References 16 Problems 17

2. Engineering Economics with VBA Procedures 19

- 2.1 Introduction to Engineering Economics 19 2.2 The Time Value of Money: Present Value (PV) and Future Value (FV)19 2.3 Annuities 22 2.4 **Comparing Process Alternatives** 29 Present Value 2.4.131 Rate of Return (ROR) 2.4.2 31 Equivalent Annual Cost/Annual Capital 2.4.3 Recovery Factor (CRF) 32 Plant Design Economics 2.5 33 2.6 Formulating Economics-Based Energy **Optimization Problems** 34 2.7 Economic Analysis with Uncertainty: Monte Carlo Simulation 36
- 2.8 Closing Comments 38

References 39 Problems 39

3. Computer-Aided Solutions of Process Material Balances: The Sequential Modular Solution Approach

1

3.1 Elementary Material Balance		ary Material Balance	
	Modules	s 42	
	3.1.1	Mixer 43	
	3.1.2	Separator 43	
	3.1.3	Splitter 44	
	3.1.4	Reactors 45	
3.2	Sequential Modular Approach: Mater		
	Balance	s with Recycle 46	
3.3	3.3 Understanding Tear Stream Iteration		
	Methods	s 49	
	3.3.1	Single-Variable Successive	
		Substitution Method 49	
	3.3.2	Multidimensional Successive	
		Substitution Method 50	
	3.3.3	Single-Variable Wegstein	
		Method 52	
	3.3.4	Multidimensional Wegstein	
		Method 53	
3.4	Materia	Balance Problems with	
	Alternat	ive Specifications 58	
3.5	Single-V	Variable Optimization	
	Problem	is 61	
	3.5.1	Forming the Objective Function	
		for Single-Variable Constrained	
		Material Balance Problems 61	
	3.5.2	Bounding Step or Bounding Phase:	
		Swann's Equation 61	
	3.5.3	Interval Refinement Phase: Interval	
		Halving 65	
3.6	Material	Balance Problems with Local	
	Nonline	ar Specifications 66	
3.7 Closing Comments		Comments 68	
	Referen	ces 69	
	Problem	us 70	

42

viii Contents

4.	4. Computer-Aided Solutions of Process Material Balances: The Simultaneous		
	Solutio	n Appro	pach 76
	4.1	Solution	of Linear Equation Sets: The
		Simultar	neous Approach 76
		4.1.1	The Gauss-Jordan Matrix Elimination
			Method 76
		4.1.2	Gauss-Jordan Coding Strategy for Linear
			Equation Sets 78
		4.1.3	Linear Material Balance Problems:
			Natural Specifications 78
		4.1.4	Linear Material Balance Problems:
			Alternative Specifications 82
	4.2	Solution	of Nonlinear Equation Sets: The
		Newton-	-Raphson Method 82
		4.2.1	Equation Linearization via Taylor's Series
			Expansion 82
		4.2.2	Nonlinear Equation Set Solution
			via the Newton-Raphson
			Method 83
		4.2.3	Newton-Raphson Coding Strategy for
			Nonlinear Equation Sets 86
		4.2.4	Nonlinear Material Balance
			Problems: The Simultaneous
			Approach 90
		Reference	ces 92
		Problem	s 93

Process Energy Balances 5.

- 5.1 Introduction 98
- 5.2 Separator: Equilibrium Flash 101 5.2.1 Equilibrium Flash with Recycle: Sequential Modular Approach 103

98

- Equilibrium Flash with Recycle: Simultaneous 5.3 Approach 109
- 5.4 Adiabatic Plug Flow Reactor (PFR) Material and Energy Balances Including Rate Expressions: Euler's First-Order Method 112 5.4.1 Reactor Types 112
- 5.5 Styrene Process: Material and Energy Balances with Reaction Rate 117
- 5.6 Euler's Method versus Fourth-Order Runge-Kutta Method for Numerical Integration 121 5.6.1 The Euler Method: First-Order **ODEs** 121 5.6.2 **RK4** Method: First-Order ODEs 122

5.7 **Closing Comments** 124 References 125 Problems 125

6. Introduction to Data Reconciliation and Gross Freer Detection

Erro	132
6.1	Standard Deviation and Probability Density
()	Date Date all'effer E 101 tor
6.2	Data Reconciliation: Excel Solver 136
	6.2.1 Single-Unit Material Balance:
	Excel Solver 136
	6.2.2 Multiple-Unit Material Balance: Excel
	Solver 138
6.3	Data Reconciliation: Redundancy and Variable
	Types 138
6.4	Data Reconciliation: Linear and Nonlinear
	Material and Energy Balances 143
6.5	Data Reconciliation: Lagrange
	Multipliers 149
	651 Data Reconciliation: Lagrange
	Multiplier Compact Matrix
	Notation 152
6.6	Gross Error Detection and
0.0	Identification 154
	6.6.1 Gross Error Detection: The Global Test
	(GT) Method 154
	6.6.2 Gross Error (Suspect Measurement)
	Identification: The Measurement Test
	(MT) Method: Linear Constraints 155
	663 Gross Error (Suspect Measurement)
	Identification: The Measurement Test
	Method: Nonlinear Constraints 156
67	Closing Remarks 159
0.7	Deference 150
	References 158
	Problems 158

Gas Turbine Cogeneration System 7. Performance, Design, and Off-Design **Calculations: Ideal Gas Fluid Properties** 164

7.1 Equilibrium State of a Simple Compressible Fluid: Development of the T dsEquations 165 7.1.1 Application of the T ds Equations to an Ideal Gas 166 7.1.2 Application of the T ds Equations to an Ideal Gas: Isentropic Process 166 General Energy Balance Equation for an 7.2 Open System 167 7.3 Cogeneration Turbine System Performance Calculations: Ideal Gas Working Fluid 167 7.3.1 Compressor Performance Calculations 167 7.3.2 **Turbine** Performance Calculations 168 7.4 Air Basic Gas Turbine Performance Calculations 169

222

243

- 7.5 Energy Balance for the Combustion Chamber 172
 - 7.5.1 Energy Balance for the Combustion Chamber: Ideal Gas Working Fluid 172
- 7.6 The HRSG: Design Performance Calculations 173
 - 7.6.1 HRSG Design Calculations: Exhaust Gas Ideal and Water-Side Real Properties 176
- 7.7 Gas Turbine Cogeneration System Performance with Design HRSG 177
 - 7.7.1 HRSG Material and Energy Balance Calculations Using Excel Callable Sheet Functions 179
- 7.8 HRSG Off-Design Calculations: Supplemental Firing 180
 - 7.8.1 HRSG Off-Design Performance: Overall Energy Balance Approach 180
 - 7.8.2 HRSG Off-Design Performance: Overall Heat Transfer Coefficient Approach 181
- 7.9 Gas Turbine Design and Off-Design Performance 185
 - 7.9.1 Gas Turbines Types and Gas Turbine Design Conditions 185
 - 7.9.2 Gas Turbine Design and Off-Design Using Performance Curves 186
 - 7.9.3 Gas Turbine Internal Mass Flow Patterns 186
 - 7.9.4 Industrial Gas Turbine Off-Design (Part Load) Control Algorithm 188
 - 7.9.5 Aeroderivative Gas Turbine Off-Design (Part Load) Control Algorithm 189
 - 7.9.6 Off-Design Performance Algorithm for Gas Turbines 189

198

7.10 Closing Remarks 193 References 194 Problems 194

8. Development of a Physical Properties Program for Cogeneration Calculations

- 8.1 Available Function Calls for Cogeneration Calculations 198
 8.2 Pure Species Thermodynamic
- Properties 202 8.3 Derivation of Working Equations for Pure
- Species Thermodynamic Properties 207 8.4 Ideal Mixture Thermodynamic Properties:
- 8.4 Ideal Mixture Thermodynamic Properties. General Development and Combustion Reaction Considerations 209 8.4.1 Ideal Mixture 209 8.4.2 Changes in Enthalpy and Entropy 209
- 8.5 Ideal Mixture Thermodynamic Properties: Apparent Difficulties 211

- 8.6 Mixing Rules for EOS 213
- 8.7 Closing Remarks 215 References 216 Problems 216
- 9. Gas Turbine Cogeneration System Performance, Design, and Off-Design Calculations: Real Fluid Properties
 - 9.1 Cogeneration Gas Turbine System Performance Calculations: Real Physical Properties 223
 9.1.1 Air Compressor (AC) Performance Calculation 224
 9.1.2 Energy Balance for the Combustion Chamber (CC) 224
 - Chamber (CC) 224
 9.1.3 C Functions for Combustion Temperature and Exhaust Gas Physical Properties 224
 - 9.1.4 Gas and Power Turbine (G&PT) Performance Calculations 229
 - 9.1.5 Air Preheater (APH) 230
 - 9.2 HRSG: Design Performance Calculations 230
 - 9.3 HRSG Off-Design Calculations: Supplemental Firing 232
 - 9.3.1 HRSG Off-Design Performance: Overall Energy Balance Approach 233
 - 9.3.2 HRSG Off-Design Performance: Overall Heat Transfer Coefficient Approach 234
 - 9.4 Gas Turbine Design and Off-Design Performance 235
 - 9.5 Closing Remarks 237 References 238 Problems 238

10. Gas Turbine Cogeneration System Economic Design Optimization and Heat Recovery Steam Generator Numerical Analysis

Cogeneration System: Economy 10.1 of Scale 244 Cogeneration System Configuration: Site 10.2 244 Power-to-Heat Ratio Economic Optimization of a 10.3 Cogeneration System: The CGAM Problem 245 The Objective Function: Cogeneration 10.3.1 System Capital and Operating Costs 246 Optimization: Variable Selection and 10.3.2 Solution Strategy 248 Process Constraints 249 10.3.3

x Contents

10.4	Economic Design Optimization of the CGAM		
10.1	Problem: Ideal Gaa 240		
	10 d l di D l di CAS 249		
	10.4.1 Air Preheater (APH) Equations 249		
	10.4.2 CGAM Problem Physical		
	Properties 249		
10.5	The CGAM Cogeneration Design Problem:		
	Real Physical Properties 250		
10.6	Comparing CogenD and General Electric's		
	GateCycle [™] 253		
10.7	Numerical Solution of HRSG Heat Transfer		
	Problems 254		
	10.7.1 Steady-State Heat Conduction in a		
	One-Dimensional Wall 254		
	10.7.2 Unsteady-State Heat Conduction in a		
	One-Dimensional Wall 255		
	10.7.3 Steady-State Heat Conduction in the		
	HRSG 259		
10.8	Closing Remarks 266		
	References 267		
	Problems 267		

11. Data Reconciliation and Gross Error
Detection in a Cogeneration System272

11.1	Cogeneration System Data
	Reconciliation 272
11.2	Cogeneration System Gross Error Detection
	and Identification 278
11.3	Visual Display of Results 281
11.4	Closing Comments 281
	References 282
	Problems 283

284

12. Optimal Power Dispatch in a Cogeneration Facility

12.1	Develo	ping the Optimal Dispatch
	Model	284
12.2	Overvie	ew of the Cogeneration System 286
12.3	Genera	Operating Strategy
	Conside	erations 287
124	Fouinr	ent Energy Effectorer 207
12.4	Equipit	ient Energy Efficiency 287
	12.4.1	Stand-Alone Boiler (Boiler 4)
		Performance (Based on Fuel Higher
		Heating Value (HHV)) 288
	12.4.2	Electric Chiller Performance 289
	12.4.3	Steam-Driven Chiller
		Performance 290
	12.4.4	GE Air Cooler Chiller
		Performance 291
	12.4.5	GE Gas Turbine Performance (Based on
		Fuel HHV) 294
	12.4.6	GE Gas Turbine HRSG Boiler 8
		Performance (Based on Fuel
		(1111) 293

- 12.4.7 GE Gas Turbine HRSG Boiler 8 Performance Supplemental Firing (Based on Fuel HHV) 296
- 12.4.8 Allison Gas Turbine Performance (Based on Fuel *HHV*) 296
- 12.4.9 Allison Gas Turbine HRSG Boiler 7 Performance (Based on Fuel *HHV*) 297
- 12.4.10 Allison Gas Turbine HRSG Boiler 7 Performance Supplemental Firing (Based on Fuel HHV) 297
- 12.5 Predicting the Cost of Natural Gas and Purchased Electricity 298
 12.5.1 Natural Gas Cost 299
 12.5.2 Purchased Electricity Cost 299
 12.6 Development of a Multiperiod Dispatch
- Model for the Cogeneration Facility 302 12.7 Closing Comments 309 References 310

310

13. Process Energy Integration

Problems

314

343

13.1	Introduction to Process Energy Integration/
	Minimum Utilities 314
13.2	Temperature Interval/Problem Table Analysis
	with 0° Approach Temperature 316
13.3	The Grand Composite Curve (GCC) 317
13.4	Temperature Interval/Problem Table
	Analysis with "Real" Approach
	Temperature 318
13.5	Determining Hot and Cold Stream from the
	Process Flow Sheet 319
13.6	Heat Exchanger Network Design with
	Maximum Energy Recovery (MER) 324
	13.6.1 Design above the Pinch 325
	13.6.2 Design below the Pinch 327
13.7	Heat Exchanger Network Design with Stream
	Splitting 328
13.8	Heat Exchanger Network Design with
	Minimum Number of Units (MNU) 329
13.9	Software for Teaching the Basics of Heat
	Exchanger Network Design (Teaching Heat
	Exchanger Networks (THEN)) 331
13.10	Heat Exchanger Network Design: Distillation
	Columns 331
13.11	Closing Remarks 336
	References 336
	Problems 337

14. Process and Site Utility Integration

- 14.1Gas Turbine-Based Cogeneration UtilitySystem for a Processing Plant343
- 14.2 Steam Turbine-Based Utility System for a Processing Plant 353

References363Problems363

15. Site Utility Emissions

14.3

14.4

368

	15.1	Emissio	ns from Stoichiometric
	150	Emission	rations 309
	13.2	Calculat	ions 370
		15.2.1	Equilibrium Proctions 371
		15.2.1	Compussion Chamber Material
		10.2.2	Balances 371
		1523	Equilibrium Relations for Gas-Phase
		10.2.5	Reactions/Gas-Phase Combustors 372
		15.2.4	Equilibrium Compositions from
			Equilibrium Constants 376
	153	Emissio	n Prediction Using Elementary
	10.0	Kinetics	Rate Expressions 380
		1531	Compussion Chemical Kinetics 380
		15.3.1	Compact Matrix Notation for the Species
		10.0.1	Net Generation (or Production)
			Rate 381
	15.4	Models	for Predicting Emissions from Gas
		Turbine	Combustors 382
		15.4.1	Perfectly Stirred Reactor for Combustion
			Processes: The Material Balance
			Problem 382
		15.4.2	The Energy Balance for an Open System
			with Reaction (Combustion) 385
		15.4.3	Perfectly Stirred Reactor Energy
			Balance 385
		15.4.4	Solution of the Perfectly Stirred Reactor
			Material and Energy Balance Problem
			Using the Provided CVODE Code 386
		15.4.5	Plug Flow Reactor for Combustion
			Processes: The Material Balance
		1	Problem 388
		15.4.6	Plug Flow Reactor for Combustion
			Processes: The Energy Balance
	155	Clasica	Problem 389
	15.5	Defense	
		CUODI	Ces 393
		Drohlom	204
		FIUDIEN	15 394
16.	Coal-F	'ired Coi	ventional Utility Plants
	with C	O ₂ Capt	ure (Design and Off-Design
	Steam	Turbine	Performance) 397

- 16.1 Power Plant Design Performance (Using Operational Data for Full-Load Operation) 398
 16.1.1 Turbine System: Design Case (See
 - Example 16.1.xls) 401

- Contents xi
- 16.1.2 Extraction Flow Rates and Feedwater Heaters 402
- 16.1.3 Auxiliary Turbine/High-Pressure Feedwater Pump 402
- 16.1.4 Low-Pressure Feedwater Pump 403
- 16.1.5 Turbine Exhaust End Loss 403
- 16.1.6Steam Turbine System Heat Rate and
Performance Parameters405
- 16.2 Power Plant Off-Design Performance (Part Load with Throttling Control Operation) 406
 - 16.2.1 Initial Estimates for All Pressures and Efficiencies: Sub Off_Design_Initial_ Estimates () 406
 - 16.2.2 Modify Pressures: Sub Pressure_ Iteration () 406
 - 16.2.3 Modify Efficiencies: Sub Update Efficiencies () 408
- 16.3 Levelized Economics for Utility Pricing 409
- 16.4 CO₂ Capture and Its Impact on a Conventional Utility Power Plant 413

414

16.5 Closing Comments References 417 Problems 417

17. Alternative Energy Systems

419

- 17.1 Levelized Costs for Alternative Energy Systems 419
- 17.2 Organic Rankine Cycle (ORC): Determination of Levelized Cost 420
- 17.3 Nuclear Power Cycle 425
 17.3.1 A High-Temperature Gas-Cooled Nuclear Reactor (HTGR) 425
 References 427
 Problems 427

Appendix. Bridging Excel and C Codes 429

A.1 Introduction 429 A.2 Working with Functions 431 A.3 Working with Vectors 434 A.4 Working with Matrices 442 A.4.1 Gauss-Jordan Matrix Elimination Method 442 Coding the Gauss-Jordan Matrix A.4.2 Elimination Method 443 **Closing Comments** A.5 446 References 448 Tutorial 448 Microsoft C++ 2008 Express: Creating C Programs and DLLs 448 Index 458