Fundamentals of Momentum, Heat, and Mass Transfer

5th Edition

James R. Welty

Department of Mechanical Engineering

Charles E. Wicks

Department of Chemical Engineering

Robert E. Wilson

Department of Mechanical Engineering

Gregory L. Rorrer

Department of Chemical Engineering Oregon State University

John Wiley & Sons, Inc.

Introduction to Momentum Transfer 1. 1

- 1.1 Fluids and the Continuum 1
- 1.2 Properties at a Point 2

8

- 1.3 Point-to-Point Variation of Properties in a Fluid 5
- Units 1.4
- 1.5 Compressibility 9
- Surface Tension 1.6 11

2. Fluid Statics 16

- 2.1 Pressure Variation in a Static Fluid 16
- 2.2 Uniform Rectilinear Acceleration 19
- 2.3 Forces on Submerged Surfaces 20 23
- 2.4 Buoyancy
- 2.5 Closure 25

3. Description of a Fluid in Motion 29

- 3.1 Fundamental Physical Laws 29
- 3.2 Fluid-Flow Fields: Lagrangian and Eulerian Representations 29
- 3.3 Steady and Unsteady Flows 30
- 3.4 Streamlines 31
- 3.5 Systems and Control Volumes 32

4. Conservation of Mass: Control-Volume Approach 34

- 4.1 Integral Relation 34
- 4.2 Specific Forms of the Integral Expression 35
- 4.3 Closure 39

5. Newton's Second Law of Motion: Control-Volume Approach 43

- 5.1 Integral Relation for Linear Momentum 43
- 5.2 Applications of the Integral Expression for Linear Momentum 46
- 5.3 Integral Relation for Moment of Momentum 52
- Applications to Pumps and Turbines 5.4 53
- Closure 5.5 57

6. Conservation of Energy: Control-Volume Approach 63

- 6.1 63 Integral Relation for the Conservation of Energy
- 6.2 Applications of the Integral Expression 69

- 6.3 The Bernoulli Equation 72
- 6.4 Closure 76

7. Shear Stress in Laminar Flow 81

- 7.1 Newton's Viscosity Relation 81
- 7.2 Non-Newtonian Fluids 82
- 7.3 Viscosity 83
- 7.4 Shear Stress in Multidimensional Laminar Flows of a Newtonian Fluid 88
- 7.5 Closure 90

8. Analysis of a Differential Fluid Element in Laminar Flow 92

- Fully Developed Laminar Flow in a Circular Conduit of Constant Cross Section 92
- 8.2 Laminar Flow of a Newtonian Fluid Down an Inclined-Plane Surface 95
- 8.3 Closure 97

9. Differential Equations of Fluid Flow 99

- 9.1 The Differential Continuity Equation 99
- 9.2 Navier-Stokes Equations 101
- 9.3 Bernoulli's Equation 110
- 9.4 Closure 111

10. Inviscid Fluid Flow 113

- 10.1 Fluid Rotation at a Point 113
- 10.2 The Stream Function 114
- 10.3 Inviscid, Irrotational Flow about an Infinite Cylinder 116
- 10.4 Irrotational Flow, the Velocity Potential 117
- 10.5 Total Head in Irrotational Flow 119
- 10.6 Utilization of Potential Flow 119
- 10.7 Potential Flow Analysis—Simple Plane Flow Cases 120
- 10.8 Potential Flow Analysis—Superposition 121
- 10.9 Closure 123

11. Dimensional Analysis and Similitude 125

- 11.1 Dimensions 125
- 11.2 Dimensional Analysis of Governing Differential Equations 126
- 11.3 The Buckingham Method 128
- 11.4 Geometric, Kinematic, and Dynamic Similarity 131
- 11.5 Model Theory 132
- 11.6 Closure 134

12. Viscous Flow 137

12.1 Reynolds's Experiment 137

12.2 Drag 138

- 12.3 The Boundary-Layer Concept 144
- 12.4 The Boundary-Layer Equations 145
- 12.5 Blasius's Solution for the Laminar Boundary Layer on a Flat Plate 146
- 12.6 Flow with a Pressure Gradient 150
- 12.7 von Kármán Momentum Integral Analysis 152
- 12.8 Description of Turbulence 155
- 12.9 Turbulent Shearing Stresses 157
- 12.10 The Mixing-Length Hypothesis 158
- 12.11 Velocity Distribution from the Mixing-Length Theory 160
- 12.12 The Universal Velocity Distribution 161
- 12.13 Further Empirical Relations for Turbulent Flow 162
- 12.14 The Turbulent Boundary Layer on a Flat Plate 163
- 12.15 Factors Affecting the Transition From Laminar to Turbulent Flow 165
- 12.16 Closure 165

13. Flow in Closed Conduits 168

13.1	Dimensional Analysis of Conduit Flow 168	
13.2	Friction Factors for Fully Developed Laminar, Turbulent,	
	and Transition Flow in Circular Conduits 170	
13.3	Friction Factor and Head-Loss Determination for Pipe Flow 173	
13.4	Pipe-Flow Analysis 176	
13.5	Friction Factors for Flow in the Entrance to a Circular Conduit 179	
13.6	Closure 182	

14. Fluid Machinery 185

- 14.1 Centrifugal Pumps 186
- 14.2 Scaling Laws for Pumps and Fans 194
- 14.3 Axial and Mixed Flow Pump Configurations 197
- 14.4 Turbines 197
- 14.5 Closure 197

15. Fundamentals of Heat Transfer 201

- 15.1 Conduction 201
- 15.2 Thermal Conductivity 202
- 15.3 Convection 207
- 15.4 Radiation 209
- 15.5 Combined Mechanisms of Heat Transfer 209
- 15.6 Closure 213

16. Differential Equations of Heat Transfer 217

- 16.1 The General Differential Equation for Energy Transfer 217
- 16.2 Special Forms of the Differential Energy Equation 220
- 16.3 Commonly Encountered Boundary Conditions 221
- 16.4 Closure 222

17. Steady-State Conduction 224

- 17.1 One-Dimensional Conduction 224
- 17.2 One-Dimensional Conduction with Internal Generation of Energy 230
- 17.3 Heat Transfer from Extended Surfaces 233
- 17.4 Two- and Three-Dimensional Systems 240
- 17.5 Closure 246

18. Unsteady-State Conduction 252

- 18.1 Analytical Solutions 252
- 18.2 Temperature-Time Charts for Simple Geometric Shapes 261
- 18.3 Numerical Methods for Transient Conduction Analysis 263
- 18.4 An Integral Method for One-Dimensional Unsteady Conduction 266
- 18.5 Closure 270

19. Convective Heat Transfer 274

- 19.1 Fundamental Considerations in Convective Heat Transfer 274
- 19.2 Significant Parameters in Convective Heat Transfer 275
- 19.3 Dimensional Analysis of Convective Energy Transfer 276
- 19.4 Exact Analysis of the Laminar Boundary Layer 279
- 19.5 Approximate Integral Analysis of the Thermal Boundary Layer 283
- 19.6 Energy- and Momentum-Transfer Analogies 285
- 19.7 Turbulent Flow Considerations 287
- 19.8 Closure 293

20. Convective Heat-Transfer Correlations 297

- 20.1 Natural Convection 297
- 20.2 Forced Convection for Internal Flow 305
- 20.3 Forced Convection for External Flow 311
- 20.4 Closure 318

21. Boiling and Condensation 323

- 21.1 Boiling 323
- 21.2 Condensation 328
- 21.3 Closure 334

22. Heat-Transfer Equipment 336

- 22.1 Types of Heat Exchangers 336
- 22.2 Single-Pass Heat-Exchanger Analysis: The Log-Mean Temperature Difference 339
- 22.3 Crossflow and Shell-and-Tube Heat-Exchanger Analysis 343
- 22.4 The Number-of-Transfer-Units (NTU) Method of Heat-Exchanger Analysis and Design 347
- 22.5 Additional Considerations in Heat-Exchanger Design 354
- 22.6 Closure 356

23. Radiation Heat Transfer 359

23.1	Nature of Radiation 359
23.2	Thermal Radiation 360
23.3	The Intensity of Radiation 361
23.4	Planck's Law of Radiation 363
23.5	Stefan-Boltzmann Law 365
23.6	Emissivity and Absorptivity of Solid Surfaces 367
23.7	Radiant Heat Transfer Between Black Bodies 370
23.8	Radiant Exchange in Black Enclosures 379
23.9	Radiant Exchange in Reradiating Surfaces Present 380
23.10	Radiant Heat Transfer Between Gray Surfaces 381
23.11	Radiation from Gases 388
23.12	The Radiation Heat-Transfer Coefficient 392

23.13 Closure 393

24. Fundamentals of Mass Transfer 398

- 24.1 Molecular Mass Transfer 399
 24.2 The Diffusion Coefficient 407
 24.3 Convective Mass Transfer 428
 24.4 Closure 429
- 25. Differential Equations of Mass Transfer

5. Differential Equations of Mass Transfer 433

- 25.1 The Differential Equation for Mass Transfer 433
- 25.2 Special Forms of the Differential Mass-Transfer Equation 436
- 25.3 Commonly Encountered Boundary Conditions 438
- 25.4 Steps for Modeling Processes Involving Molecular Diffusion 441
- 25.5 Closure 448

26. Steady-State Molecular Diffusion 452

- 26.1 One-Dimensional Mass Transfer Independent of Chemical Reaction 452
- 26.2 One-Dimensional Systems Associated with Chemical Reaction 463
- 26.3 Two- and Three-Dimensional Systems 474
- 26.4 Simultaneous Momentum, Heat, and Mass Transfer 479
- 26.5 Closure 488

27. Unsteady-State Molecular Diffusion 496

- 27.1 Unsteady-State Diffusion and Fick's Second Law 496
- 27.2 Transient Diffusion in a Semi-Infinite Medium 497
- 27.3 Transient Diffusion in a Finite-Dimensional Medium Under Conditions of Negligible Surface Resistance 500
- 27.4 Concentration-Time Charts for Simple Geometric Shapes 509
- 27.5 Closure 512

28. Convective Mass Transfer 517

- 28.1 Fundamental Considerations in Convective Mass Transfer 517
- 28.2 Significant Parameters in Convective Mass Transfer 519
- 28.3 Dimensional Analysis of Convective Mass Transfer 521
- 28.4 Exact Analysis of the Laminar Concentration Boundary Layer 524
- 28.5 Approximate Analysis of the Concentration Boundary Layer 531
- 28.6 Mass, Energy, and Momentum-Transfer Analogies 533
- 28.7 Models for Convective Mass-Transfer Coefficients 542
- 28.8 Closure 545

29. Convective Mass Transfer Between Phases 551

- 29.1 Equilibrium 551
- 29.2 Two-Resistance Theory 554
- 29.3 Closure 563

30. Convective Mass-Transfer Correlations 569

- 30.1 Mass Transfer to Plates, Spheres, and Cylinders 569
- 30.2 Mass Transfer Involving Flow Through Pipes 580
- 30.3 Mass Transfer in Wetted-Wall Columns 581
- 30.4 Mass Transfer in Packed and Fluidized Beds 584
- 30.5 Gas-Liquid Mass Transfer in Stirred Tanks 585
- 30.6 Capacity Coefficients for Packed Towers 587
- 30.7 Steps for Modeling Mass-Transfer Processes Involving Convection 588
- 30.8 Closure 595

31. Mass-Transfer Equipment 603

- 31.1 Types of Mass-Transfer Equipment 603
- 31.2 Gas-Liquid Mass-Transfer Operations in Well-Mixed Tanks 605
- 31.3 Mass Balances for Continuous Contact Towers: Operating-Line Equations 611
- 31.4 Enthalpy Balances for Continuous-Contact Towers 620
- 31.5 Mass-Transfer Capacity Coefficients 621
- 31.6 Continuous-Contact Equipment Analysis 622
- 31.7 Closure 636

Nomenclature 641

APPENDIXES

- A. Transformations of the Operators ∇ and ∇^2 to Cylindrical Coordinates 648
- B. Summary of Differential Vector Operations in Various Coordinate Systems 651
- C. Symmetry of the Stress Tensor 654
- D. The Viscous Contribution to the Normal Stress 655
- E. The Navier–Stokes Equations for Constant ρ and μ in Cartesian, Cylindrical, and Spherical Coordinates 657
- F. Charts for Solution of Unsteady Transport Problems 659

- G. Properties of the Standard Atmosphere 672
- H. Physical Properties of Solids 675
- I. Physical Properties of Gases and Liquids 678
- J. Mass-Transfer Diffusion Coefficients in Binary Systems 691
- K. Lennard–Jones Constants 694
- L. The Error Function 697
- M. Standard Pipe Sizes 698
- N. Standard Tubing Gages 700

Author Index 703

Subject Index 705