Excitations in Organic Solids

Vladimir M. Agranovich The University of Texas at Dallas

1	Inti	roduction	1
2	Frenkel excitonic states in the Heitler–London ap-		
	pro	ximation	10
	2.1	Excitons in a molecular crystal with fixed molecules.	
		Splitting of molecular terms in a crystal	10
	2.2	Frenkel, Coulomb, and mechanical excitons	15
	2.3	Application of group theory for the determination of polarization and selection rules for excitonic light	
		absorption. Degeneracy of excitonic levels	23
		2.3.1 Winston theory	23
		2.3.2 Applications to crystals of naphthalene type	26
		2.3.3 Symmetry properties of Coulomb excitons	28
	2.4	Triplet excitons	30
3	\mathbf{The}	e second-quantized theory of Frenkel excitons	36
	3.1	Energy operator for a molecular crystal with fixed molecules	
		in the second-quantization representation. Paulions	
		and Bosons	36
	3.2	Excitonic states in the two-level model. Transition to	
		the Heitler–London approximation	39
		3.2.1 Crystals with one molecule per unit cell	42
		3.2.2 Crystals with several molecules per unit cell	43
	3.3	Exciton states beyond the Heitler–London approxima-	
		tion	46
		3.3.1 Small corrections to Heitler–London approxima-	
		tion	49
	3.4	Exciton states in the presence of several molecular states	
		(mixing of molecular configurations)	53
		3.4.1 One molecule per unit cell	55
		3.4.2 Several molecules per unit cell	56
	3.5	Perturbation theory. A comparison with results ob-	
		tained in the Heitler–London approximation	60
	3.6	Sum rules for the oscillator strengths of excitonic tran-	
		sitions and the hypochromatic effect	62
	3.7	Exciton-phonon interaction	67
	3.8	Spectra and mobility of self-trapped (ST) excitons	71
		3.8.1 Mechanism of self-trapping of Frenkel excitons	73
		3.8.2 Spectra and transport of self-trapped excitons	75
		3.8.3 Self-trapping barrier	75

			-
		3.8.4 Self-trapping of charge-transfer excitons	76
		3.8.5 Self-trapping in one-dimensional structures	76
	3.9	Electron-vibrational excited states in molecular crys-	
		tals	77
	3.10	Calculation of the exciton states in molecular crystals	85
	0120	3 10 1 Anthracene and naphthalene	91
		3 10.2 Tetracene and nentacene	93
	2 1 1	Event transformation from paulions to bosons	0 <i>4</i>
	0.11	Exact dialision field patholis to bosons	54
	3.12	Kinematic blexcitons	98
4	Pola	aritons: Excitonic States Taking Account Of Re-	
	tard	lation.	103
	4.1	The crystal energy operator in the presence of a re-	
		tarded interaction	103
	42	Dispersion of polaritons and refraction index of elec-	200
	4.4	tromomotic marca	108
		4.9.1 Operators of electric and magnetic folds	100
	4.0	4.2.1 Operators of electric and magnetic fields	110
	4.3	Polariton mechanism of exciton luminescence	118
	4.4	The dielectric tensor and the phenomenology of long-	
		wavelength excitons	121
	4.5	Giant radiative width of small wavevector polaritons in	
		one- and two-dimensional structures ("polariton	
		superradiance")	128
	4.6	Effective radiative lifetime	136
	4.7	Concluding remarks	137
_			
5	Diel	ectric theory of Frenkel excitons: local field ef-	
	fects	5	140
	5.1	Introduction: the local field method	140
	5.2	Dielectric tensor of cubic crystals	144
	5.3	Effects of impurities	145
	5.4	Dielectric tensor of organic anisotropic crystals	148
	5.5	Dielectric constant of mixed crystalline solutions and	
		polarization of impurity absorption hands	151
	56	Ontical properties of mixed crystalline solutions	156
	57	Energy of the recommon interaction of the immunity	100
	0.1	melocules	150
	F 0	molecules	159
	5.8	The higher multipoles in the local field method	162
6	Bipł	nonons and Fermi Resonance in Vibrational Spec-	
	tra	of Crystals	166
	6.1	Effects of strong anharmonicity in vibrational anostro	100
	0.1	of ervetale	100
	60	Diphonon theory	100
	0.4	Diphonon meory	169
		0.2.1 Biphonons in the overtone frequency region of	

х

	CONTENTS	xi
	an intramolecular vibrations: qualitative	
	consideration	169
	6.2.2 Biphonon states	174
	6.2.3 Biphonons in the sum frequency region of the	
	spectrum – the Van Kranendonk model	178
6.3	Green's functions in biphonon theory and Fermi reso-	
	nance in crystals	180
	6.3.1 Fermi resonance	188
6.4	Fermi resonance with polaritons	189
	6.4.1 Microscopic theory	189
	6.4.2 Macroscopic theory – Transverse, longitudinal,	
	and surface biphonons	194
6.5	Dielectric tensor of a crystal in the spectral region of	
	two-particle phonon states: microscopic theory	196
6.6	Biphonons and biexcitons and the gigantic nonlinear	
	polarizability effect	199
6.7	Experimental investigations of biphonons and Fermi	
	resonance with polariton	202
6.8	Local biphonons in crystals with isotopic substitution	
	impurities	208
	6.8.1 Where does the formation of local states begin	
	in a spectrum of optical vibrations? Ef-	
	fects of strong anharmonicity	208
	6.8.2 Local biphonon in an $^{14}NH_4Br$ crystal contain-	
	ing the isotopic substitution impurity ¹⁵ N	
	210	
6.9	Conclusion and prospects for further investigations	211
The	e dielectric tensor of crystals in the region of ex-	
cito	onic resonances	215
7.1	On the calculation of the dielectric tensor	215
7.2	The Pitaevsky–Dzyaloshinsky formula for the dielec-	
	tric tensor	217
7.3	Polariton states in the calculation of the dielectric ten-	
	sor in the region of Frenkel exciton resonances	220
7.4	The transverse dielectric tensor and dissipation of light	
	waves	224
	7.4.1 The transverse dielectric tensor	224
	7.4.2 The dissipation of polaritons in the vicinity of	
	exciton resonances	227
7.5	Macroscopic and microscopic theories of optical non-	
	linearity in the region of exciton resonances	229
	7.5.1 On polariton anharmonicity in the nonlinear op-	
	tical response	231

8	Diel	ectric	tensor of superlattices	233		
	8.1	8.1 Long-period superlattices				
	8.2	Spatia	al dispersion in superlattices	234		
		8.2.1	Spatial dispersion in the vicinity of an excitonic			
			resonance $(\ell_{1,2} > a_B)$	234		
		8.2.2	Spatial dispersion in the vicinity of an excitonic			
			resonance $(\ell_1 < a_B, \ell_2 > a_B)$	237		
		8.2.3	Gyrotropy in superlattices	238		
	8.3	Dieleo	ctric tensor of superlattices with anisotropic lay-			
		4	ers	239		
		8.3.1	Dielectric tensor of a superlattice	239		
		8.3.2	Magnetooptical effects in superlattices	241		
		8.3.3	Influence of a static electric field	243		
	8.4	Optic	al nonlinearities in organic multilayers	244		
		8.4.1	$\chi^{(2)}$ optical nonlinearities in superlattices	244		
a	Evci	itation	as in organic multilavers	246		
0	Q 1	Gas-c	condensed matter shift and the possibility of gov-	- 10		
	0.1	0000	erning spectra of Frenkel excitons in thin layers	246		
	92	Fermi	resonance interface modes in organic superlat-			
	0.2	1 011111	tices	251		
		021	Fermi resonance in molecules	251		
		922	Fermi-resonance wave in a two-layer system	257		
		923	Fermi resonance interface waves	259		
		924	Bistable energy transmission through the inter-	200		
		0.2.1	face with Fermi resonance interaction	262		
10	Cav	ity po	laritons in organic microcavities	266		
	10.1	Giant	Rabi splitting in organic microcavities	266		
	10.2	Micro	cavities with crystalline organics	269		
		10.2.1	Introduction	269		
		10.2.2	Cavity photons and Coulomb excitons	270		
		10.2.3	Cavity polaritons	272		
		10.2.4	One molecule in the unit cell	274		
		10.2.5	Two molecules in the unit cell	275		
		10.2.6	Conclusions	278		
	10.3	Micro	cavities with disordered organics	278		
		10.3.1	Qualitative picture	278		
	10.4	Macro	oscopic classical theory	280		
		10.4.1	General expressions	280		
		10.4.2	The case of vanishing q	284		
		10.4.3	The case of large q	286		
		10.4.4	Microscopic quantum theory	288		
	10.5	The lo	ocalized end-point polariton states	290		

xii

		CONTENTS	xiii
		10.5.1 Dynamics of a low-energy wavepacket in a per-	
		fect microcavity	290
		10.5.2 Time evolution of the lowest wavepacket	293
		10.5.3 Concluding remarks	300
11	Cha	rge transfer excitons	301
	11.1	Introduction	301
	11.2	Stark effect and electroabsorption of CTEs	303
	11.3	Phase transition from the dielectric to the conducting	
		state (cold photoconductivity)	305
		11.3.1 Analytical approach	306
		11.3.2 Numerical simulations	309
		11.3.3 Results of numerical simulations	310
		11.3.4 Concluding remarks	313
	11.4	Cumulative photovoltage in asymmetrical donor-acceptor	
		organic superlattices	315
		11.4.1 Introduction	315
		11.4.2 On the mechanisms of the photovoltaic effects	017
		in organics	317
		11.4.3 Cumulative photovoltage in an asymmetrical stack	010
	11 8	OI D-A interfaces	318
	11.5	Nonlinear optical response of charge-transfer excitons	201
		at donor-acceptor interface	321
		11.5.1 Resonant optical nonlinearity of CTES: the role	201
		11.5.2 Photogrammated static electric field, influence on	521
		the nonresonant entirel reanance	202
		the nonresonant optical response	323
12	Surf	face excitons	325
	12.1	Introduction	325
		12.1.1 Surface excitons and polaritons	325
		12.1.2 Coulomb surface excitons	327
		12.1.3 The exciton-phonon interaction and the role of	
		surface defects	328
	12.2	Phenomenological theory of surface Coulomb excitons	
		and polaritons	329
		12.2.1 Surface polaritons at the sharp interface between	
		media	329
		12.2.2 Observation of exciton surface polaritons at room	
		temperature	332
		12.2.3 Surface excitons in the presence of a transition	000
		layer	333
	10.0	12.2.4 Nonlinear surface polaritons	335
	12.3	Site shift surface excitons in molecular crystals	337
		12.3.1 Site shift surface excitons (SSSE) in anthracene	337

		12.3.2 On the radiative width of site shift surface ex-	
		citons	341
	12.4	Edge exciton states in molecular chains	345
		12.4.1 Introduction. Tamm states	345
		12.4.2 Mixing of Frenkel and charge-transfer excitons	
		in a finite molecular chain	346
		12.4.3 Edge and bulk states in a finite molecular chain	
		with mixing of Frenkel and charge-transfer	
		excitons	351
	12.5	Application to PTCDA and MePTCDI crystals	354
	12.6	Frenkel surface excitons in disordered media	356
		12.6.1 Macroscopic surface excitons and polaritons in	
		isotopically mixed crystalline solutions	356
	12.7	Conclusion	359
	-	Ben i Dess i New structures	260
13	Exc:	tons in Organic-Based Nanostructures	360
	13.1	Introduction	300
	13.2	Hybrid 2D Frenkel-wannier-Mott excitons at the in-	
		terrace of organic and morganic quantum wens.	260
		12.0.1 Genfermation of betenestructure and report ro	302
		13.2.1 Configuration of neterostructure and general re-	260
		12.0.0 The second in a meeting along ant	302
		13.2.2 The coupling matrix element	369
		13.2.5 Dispersion relations of hybrid states	308
	100	13.2.4 Linear optical response of hybrid states	370
	13.3	Hybrid excitons in parallel organic and morganic semi-	370
	10 /	Conductor quantum wires	512
	13.4	Warrier Mett excitence	276
	195	Wannier-Mott excitons	570
	15.0	waimer optics of 2D Hybrid Frenker-Waimer-Mott	377
		13.5.1 The recompany $x^{(3)}$ continuority	377
		13.5.2 Second order susceptibility $\chi^{(2)}$	383
	13.6	Weak coupling regime in hybrid nanostructures	384
	10.0	13.6.1 The Förster energy transfer	384
		13.6.2 Förster energy transfer in a planar geometry	385
		13.6.3 Noncontact numping of light emitters via nonra-	000
		diative energy transfer: new concept for	
		light-emitting devices	387
		1364 First experiments	388
		13.6.5 Förster energy transfer from quantum dots to	000
		organics	392
		13.6.6 Exciton energy transfer from a quantum dot to	002
		its surface states	395

		CONTENTS	xv
		13.6.7 Exciton energy transfer from organics to semi-	
		conductor nanocrystals and carrier mul-	
		tiplication	396
	13.7	Hybridization of Frenkel and Wannier–Mott excitons	
		in a 2D microcavity in the regime of strong cou-	
		pling	398
		13.7.1 Microcavity embedded resonant organic and in-	
		organic quantum wells	398
		13.7.2 Dispersion and relaxation of a polariton in a hy-	
		brid microcavity containing a crystalline	
		organic layer and a resonant inorganic	
		quantum well	400
		13.7.3 Classical formalism	400
		13.7.4 QED approach	402
		13.7.5 Exciton-phonon scattering in a microcavity	404
		13.7.6 Estimation of transfer rates	404
		13.7.7 Conclusion	408
14	Mot	Dility of Frenkel Excitons	410
	14.1	Diffusion of Frenkel excitons	410
	14.2	The diffusion tensor	412
	14.3	Weak exciton-phonon coupling: coherent excitons	413
		14.3.1 General expressions	413
		14.3.2 Isotropic exciton effective mass and scattering	
		by acoustic phonons	415
		14.3.3 Temperature dependence of the diffusion con-	
		stant	417
	14.4	Strong exciton-phonon coupling: incoherent excitons	418
	14.5	Transport measurements and diffusion of polaritons	420
15	Stat	istics and collective properties of Frenkel exci-	
	tons		423
	15.1	Approximate second quantization and kinematic inter-	
		action	423
	15.2	Collective properties of an ideal gas of paulions	425
	15.3	Collective properties of Frenkel excitons in the pres-	
	2010	ence of a dynamic interaction	429
		15.3.1 On biexcitons in organic crystals	432
	15.4	Kinematic interaction of exciton-polaritons in crystalline	
	1071	organic microcavities	433
	15.5	Fermionic character of Frenkel excitons in one-dimensional	200
	10.0	molecular crystals	434
			101
Α	Dia	gonalization of a Hamiltonian quadratic in the	
	Bos	e-amplitudes	437

-

в	Calculations of Polarization in Inorganic Quantum		
	Wells and in Organics		
	B.1 General relations	439	
	B.2 Polarization in a semiconductor	440	
	B.3 Polarization in organics	442	
\mathbf{C}	Microscopic Quantum-Mechanical Calculations of the		
	Energy Transfer Rate	444	
D	Energy transfer in the planar geometry	446	
	D.1 Free excitons	446	
	D.2 Localized excitons	451	
Re	ferences	455	
Tal	bles	484	
Fig	jures	485	
Ind	lex	489	

xvi