Evolution

A View from the 21st Century

James A. Shapiro

Contents

	Acknowledgmentsxiii
	About the Author
	A Note on Reading This Book for Individuals with Different Backgroundsxvii
	Introduction: Taking a Fresh Look at the Basics of Evolution in the New Century
Part I	Sensing, Signaling, and Decision-Making in Cell Reproduction .7 How E. Coli Chooses the Best Sugar to Eat
	Yeast Cell
Part II	The Genome as a Read-Write (RW) Storage
	System
	Reviewing What Cells Can Do to Rewrite Their Genomes over Time

Part III	Evolutionary Lessons from Molecular Genetics and Genome Sequencing
	Antibiotic Resistance and Horizontal DNA Transfer90
	The Modular and Duplicative Nature of
	Protein Evolution
	Molecular Taxonomy and the Discovery of a New Cell Type
	Symbiogenesis and the Origin of Eukaryotic Cells100
	Natural Genetic Engineering and Evolutionary
	Genomic Innovation
	Use and Reuse of Evolutionary Inventions
	What Makes a Man Different from a Mouse?
	Whole Genome Doubling at Critical Stages of Evolutionary Innovation and Divergence
	Reviewing What the DNA Record Reveals about Cell Activities over Evolutionary Time
Part IV	A New Conceptual Basis for Evolutionary
	Research in the 21st Century
	A Systems Approach to Generating Functional Novelties
	Reorganizing Established Functions to Generate Novelty
	Generation of Novel Components
	Retention, Duplication, and Diversification of
	Evolutionary Inventions
	The Implications of Targeting Genome Restructuring
	Can Genomic Changes Be Linked to Ecological
	Disruptions?
	What Might a 21st Century Theory of Evolution Look Like?
	Where Does Evolution Fit in 21st Century Science?
	Glossary
	References
	Index

The following material can be found online only (www.ftpress.com/shapiro):

Appendixes to Part I and Part II of the Printed Book

Appendix I.1. The lac operon control circuit.

- Appendix I.2. S. cerevisiae pheromone response signal network (Sprague 1991).
- Appendix II.1. Formatting the genome for transcriptional control.
- **Appendix II.2.** Natural genetic engineering in B lymphocytes for the rapid evolution and maturation of a virtually infinite diversity of antigenbinding proteins.

References

Table References for Part II and Part III of the Printed Book

- Table II.1DNA content in higher eukaryotes(Shapiro and Sternberg 2005)
- Table II.2Different classes of annotated repetitive
genome components (amplified from (Shapiro and
Sternberg 2005))
- Table II.3
 Generic Cell Operations That Facilitate DNA Restructuring [30, 61, 392]

 Note: These references are listed in the printed book only.
- Table II.4
 Natural Genetic Engineering Systems [6-8]

 Note:
 These references are listed in the printed book only.
- Table II.5Control of bacterial protein synthesis(phase variation) and modification of protein structure(antigenic variation) by natural genetic engineering(expanded from (Wisniewski-Dye and Vial 2008))
- Table II.6Applications of site-specific recombinationto different functions in bacterial cells (Hallet andSherratt 1997)
- Table II.7
 Various stimuli documented to activate natural genetic engineering
- Table II.8
 Genomic responses to changes in ploidy and interspecific hybridization in plants and animals
- **Table II.9**RNA-based defense against viruses and
plasmids in bacteria, archaea, fungi and plants
- **Table II.10**Life history events that alter the epigenome
(DNA methylation and chromatin formatting)
- Table II.11
 Examples of targeted natural genetic engineering
- **Table III.1** Examples of intercellular and interkingdomDNA transfer
- **Table III.2**Natural genetic engineering documented in
the evolution of sequenced genomes

Suggested Readings for Non-Professionals

Introduction Readings

The traditional perspective Heredity outside the genome New conceptual approaches

Part I Readings

How E. coli chooses the best sugar to eat

Proofreading DNA replication

DNA damage repair and mutagenesis

Cell cycle checkpoints

From the cell surface to the genome

The role of intercellular signals in the cell death decision

Revisiting the central dogma of molecular biology

Part II Readings

Genome formatting for properly accessing stored information

Genome compaction, chromatin formatting, and epigenetic regulation

Genome formatting for replication and transmission to daughter cells

Distinct classes of DNA in the genome

The molecular mechanisms of natural genetic engineering

Natural genetic engineering as part of the normal life-cycle

Developmental, cell, and molecular biology of the adaptive immune system

Cellular regulation of natural genetic engineering

Part III Readings

Antibiotic resistance and horizontal DNA transfer The modular and duplicative nature of protein evolution

Nucleic acid sequencing, molecular taxonomy, and the discovery of a new cell type

Cell evolution: mutalism, parasitism, pathogenesis, endosymbiosis, bacterial multicellularity, symbiogenesis, and the origin of eukaryotic cells

Notural constinues and incoming and construction

Natural genetic engineering and genomic innovation

Use and reuse of evolutionary inventions: Basic biology of morphogenesis and multicellular development

Molecular biology of animal and plant development

Evolutionary combinatorics and reuse

Whole genome doubling at critical stages of evolutionary innovation and divergence

Part IV Readings

Reorganizing established functions to generate novelty

The implications of targeting genome restructuring Can genomic changes be linked to ecological disruptions?

Biogeochemical influences of evolution on the environment

Paleontological record and mass extinctions What might a 21st Century theory of evolution look like?

Where does evolution fit in 21st Century science? Molecular biology background readings in chronological order

References for the Printed Book

Extra References

Cell Cycle Checkpoints

Cellular Regulation of Natural Genetic Engineering DNA Damage Repair and Mutagenesis From the Cell Surface to the Genome The Genome as a Read-Write (RW) Storage System How E. Coli Chooses the Best Sugar to Eat Molecular Mechanisms of Natural Genetic Engineering Proofreading DNA Replication Symbiogenesis and the Origin of Eukaryotic Cells What Makes a Man Different from a Mouse