

Department for Nuclear Energy and Safety Laboratory for Nuclear Materials

Crack Resistance Curve Determination of Zircaloy-4 Cladding

J. Bertsch, A. Alam, R. Zubler

Contents

1	Intro	auction	/ -
	1.1	Motivation	7 -
	1.2	Mechanical Testing of Zirconium Alloys Tube Sections	8 -
	1.3	Sample Preparation	9 -
2	Test	Matrix and Procedure	10 -
	2.1	Overview – Test Matrix	10 -
	2.2	Measurement of Parameters	11 -
	2.2.1	Parameters Overview	11 -
	2.2.2	Load Measurement	11 -
	2.2.3	B Displacement Measurement	11 -
	2.2.4	Crack Length Measurement	13 -
	2.2.5	Geometry Effects	13 -
	2.3	J Calculation and Role of Friction	14 -
	2.3.1	Influence of Friction	14 -
	2.3.2	2 J Calculation	15 -
	2.3.3	B Factors η and γ	17 -
	2.3.4	J–R Plot Construction	21 -
	2.3	3.4.1 J _{max} as upper J Limit	21 -
	2.	3.4.2 The Effective Yield Strength σ_y and Young's Modulus E	22 -
	2.	3.4.3 The <i>J–R</i> Plot Lines	23 -
	2.3	3.4.4 Qualified Starter Crack Length a _{0q}	23 -
	2.3	3.4.5 Construction of a Power Law Fit Function and Determination of J_Q	25 -
3	Resi	ults and Discussion	27 -
	3.1	Load-Displacement Curves	27 -
	3.1.1	Tube Tests at Room Temperature	27 -
	3.1.2	Comparison of Tubes and Plates at Room Temperature	29 -
	3.1.3	Tube Tests at higher Temperatures	29 -
	3.1.4	Plate Tests at higher Temperatures	30 -

	3.1.5	Comparison of Tubes and Plates at higher Temperatures	31
	3.2	The Role of Friction	32
	3.3	J–R Curves	39
	3.3.1	General Remarks	39
	3.3.2	Tube Tests at Room Temperature and the Influence of Friction	39
	3.3.3	The Friction Coefficient	40
	3.3.4	Tube Tests at different Temperatures	43
	3.3.5	Plate Tests at different Temperatures	48
	3.3.6	Comparison of Tubes and Plates at Room Temperature	54
	3.3.7	Comparison of Tubes and Plates at T = 300°C	58
	3.3.8	Comparison of Tubes and Plates at T = 350°C	60 -
	3.4 (Comparison of J_Q ($J_{0.2}$), J_{Fmax} and dJ/da Values	62
	3.4.1	Influence of Friction	62 -
	3.4.2	Influence of Temperature on Tube Testing	65 -
	3.4.3	Influence of Temperature on Plate Testing	67
	3.4.4	Comparison of Tubes and Plates at different Temperatures	71 -
	3.4.5	Comparison with earlier Results	73 -
	3.5 I	nfluence of the Gripping System (Half Cylinders)	74 -
	3.5.1	Half Cylinder Materials	74 -
	3.5.2	Effect of Half Cylinder Bending on J–R Curves	77 -
4	Concl	usions	81 -
5	Ackno	wledgement	82 -
6	Refere	ences	84 -
7	Appen	ndix: J-R Curves and Data	86 -
	7.1 J	I–R Curves	86 -
	7.1.1	First Series of Tubes without Lubricant at Room Temperature	86 -
	7.1.	1.1 Sample Jzry04 (Curve without Friction Correction)	86 -
	7.1.	1.2 Sample Jzry06 (Curve without Friction Correction)	88 -
	7.1.	1.3 Sample Jzry07 (Curve without Friction Correction)	- 90 -
	7.1.2	Second Series of Tubes without Lubricant at Room Temperature	92 -
	7.1.2	2.1 Sample Szry09 (Curve without Friction Correction)	- 92 -

7.1.2.2	Sample Szry17 (Curve without Friction Correction)	94 -
7.1.3 Se	ries of Tubes with Lubricant at Room Temperature	96 -
7.1.3.1	Sample Szry14-m (Curve without Friction Correction)	96 -
7.1.3.2	Sample Szry15-m (Curve without Friction Correction)	98 -
7.1.3.3	Sample ZryRTm_1 (Curve without Friction Correction)	100 -
7.1.3.4	Sample ZryRTm_2 (Curve without Friction Correction)	102 -
7.1.4 Se	ries of Tubes with Lubricant at T = 300°C	104 -
7.1.4.1	Sample ZryRTm_5 (Curve without Friction Correction)	104 -
7.1.4.2	Sample ZryRTm_9 (Curve without Friction Correction)	106 -
7.1.5 Se	ries of Tubes with Lubricant at T = 350°C	108 -
7.1.5.1	Sample ZryRTm_7 (Curve without Friction Correction)	108 -
7.1.5.2	Sample ZryRTm_8 (Curve without Friction Correction)	110 -
7.1.6 Se	ries of Plates at Room Temperature	112 -
7.1.6.1	Sample Zry102	112 -
7.1.6.2	Sample Zry103	114 -
7.1.7 Se	ries of Plates at T = 300°C	116 -
7.1.7.1	Sample Zry107	116 -
7.1.7.2	Sample Zry108	118 -
7.1.7.3	Sample Zry109	120 -
7.1.8 Se	ries of Plates at T = 350°C	122 -
7.1.8.1	Sample Zry110	122 -
7.1.8.2	Sample Zry111	124 -
7.2 <i>J</i> – <i>R</i> (Curves characteristic Values	126 -
7.2.1 Ch	aracteristic Values	126 -
722 Co	netruction Line 0.2 mm and 0.5 mm Offeet Lines Exclusion Lines	_ 127 _