Chapter 3
Problems, study areas, models, and data
3.1. Study area definition 38
3.2. Models 38
3.3. Data 40
3.4. A sample problem 41

Chapter 4
Trip generation
4.1. Process 42
4.2. A sample household-trip-production model 44
4.3. A sample zonal-attraction model 45
4.4. Application to the base population 45
4.5. Time of day 45

Chapter 5
Trip distribution
5.1. Process 46
5.2. Travel impedance and skim trees 47
5.3. A sample gravity model 47
5.4. Adjustments 48

Chapter 6
Mode choice 48

Chapter 7
Route choice
7.1. Process 50
7.2. A sample assignment of vehicle trip tables to the highway network 50

Chapter 8
Summary 51

References 52

Chapter 4
The Activity-based Approach
MICHAEL G. McNALLY
1. Introduction 53
2. The trip-based approach 54
2.1. The four-step model 54
2.2. Limitations 55
3. The activity-based approach 56
3.1. Characteristics of the activity-based approach 58
3.2. Theory and conceptual frameworks 59
4. Data 60
5. Applications of activity-based approaches 61
5.1. Simulation-based applications 61
5.2. Econometric-based applications 63
5.3. Other applications 64
6. Summary and future directions 65
6.1. Current modeling needs 65
6.2. Data needs 66
Contents

6.3. Policy applications 66
6.4. Where we are and where we are going 67

References 68

Chapter 5

Flexible Model Structures for Discrete Choice Analysis

CHANDRA R. BHAT 71

1. Introduction 71
2. Heteroscedastic models 73
 2.1. Model formulations 73
 2.2. HEV model structure 74
 2.3. HEV model estimation 76
 2.4. Transport applications 77
3. Flexible structure models 78
 3.1. Model formulations 79
 3.2. MMNL structure 81
 3.3. MMNL estimation methodology 83
 3.4. Transport applications 87
4. Conclusions 88
References 89

Chapter 6

Duration Modeling

CHANDRA R. BHAT 91

1. Introduction 91
2. The hazard function and its distribution 94
 2.1. Parametric hazard 95
 2.2. Nonparametric hazard 96
3. Effect of external covariates 97
 3.1. The proportional hazard form 97
 3.2. The accelerated lifetime form 99
 3.3. General form 100
4. Unobserved heterogeneity 100
5. Model estimation 101
 5.1. Parametric hazard distribution 101
 5.2. Nonparametric hazard distribution 102
6. Miscellaneous other topics 106
 6.1. Left censoring 106
 6.2. Time-varying covariates 106
 6.3. Multiple spells 106
 6.4. Multiple-duration processes 107
6.5. Simultaneous-duration processes 108
7. Conclusions and transport applications 108
References 110

Chapter 7
Longitudinal Methods
RYUICHI KITAMURA 113
1. Introduction 113
2. Panel surveys as a means of collecting longitudinal data 113
3. Cross-sectional vs. longitudinal analyses 114
4. Travel behavior dynamics 116
5. Stochastic processes 118
5.1. Renewal processes 118
5.2. Markov renewal processes 119
5.3. Markov processes 119
5.4. Markov chains 120
6. Discrete time panel data and analyses 121
6.1. Linear models 122
6.2. Distributed-lag models 123
6.3. Lagged dependent variables 123
6.4. Non-linear models 125
6.5. Dynamic models 125
6.6. Initial conditions 126
6.7. State dependence vs. heterogeneity 126
7. Issues in panel survey design 127
8. Conclusion 128
References 128

Chapter 8
Stated-preference Methods
JORDAN LOUVIERE and DEBORAH STREET 131
1. Introduction 131
2. Random utility based SP methods 132
3. Choice experiment designs consistent with RUT 136
4. Statistical properties of choice experiments 137
4.1. Paired comparisons 137
4.2. Multiple comparisons (choices) 138
References 142

Chapter 9
Towards a Land-use and Transport Interaction Framework
FRANCISCO J. MARTÍNEZ 145

Contents

2.1. Accounting cost functions 324
2.2. Statistical estimation of cost functions 325
2.3. Returns to scale 328
2.4. Productivity and technological change 329
2.5. Extensions 329
3. Applications 330
4. Conclusion 332
References 333

Chapter 20
Productivity Measurement
W.G. WATERS II 335
1. Introduction 335
2. Concepts of productivity gains 336
3. Index number procedures for productivity measurement 337
4. Conventional econometric methods 345
5. Concluding remarks 348
References 350

Chapter 21
Congestion Modeling
ROBIN LINDSEY and ERIK VERHOEF 353
1. Introduction 353
2. Time-independent models 354
3. Time-dependent models 358
4. Modeling congestion on a network 366
5. Road pricing and investment 368
6. Conclusions 371
References 372

Chapter 22
Modeling Signalized and Unsignalized Junctions
ROD TROUTBECK 375
1. Introduction 375
2. Definition of capacity and delay 375
3. Unsignalized junctions 376
4. Stream rankings 376
5. Availability of opportunities 376
6. The order of opportunities 377
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.</td>
<td>The usefulness of opportunities to the entering drivers</td>
<td>378</td>
</tr>
<tr>
<td>3.5.</td>
<td>The relative priority of traffic at the junction</td>
<td>379</td>
</tr>
<tr>
<td>3.6.</td>
<td>The capacity of simple merges with absolute priority</td>
<td>379</td>
</tr>
<tr>
<td>3.7.</td>
<td>The capacity of a limited priority merge and a roundabout entry</td>
<td>380</td>
</tr>
<tr>
<td>3.8.</td>
<td>The estimation of delays at simple merges with absolute priority</td>
<td>381</td>
</tr>
<tr>
<td>3.9.</td>
<td>Estimation of delay using M/M/1 queuing theory</td>
<td>382</td>
</tr>
<tr>
<td>3.10.</td>
<td>Delays under oversaturated conditions</td>
<td>383</td>
</tr>
<tr>
<td>3.11.</td>
<td>Queue lengths at simple merges</td>
<td>384</td>
</tr>
<tr>
<td>3.12.</td>
<td>Analysis of junctions with a number of streams</td>
<td>385</td>
</tr>
<tr>
<td>3.13.</td>
<td>Queueing across a median</td>
<td>386</td>
</tr>
<tr>
<td>4.</td>
<td>Signalized junctions</td>
<td>386</td>
</tr>
<tr>
<td>4.1.</td>
<td>Effective red and green periods</td>
<td>386</td>
</tr>
<tr>
<td>4.2.</td>
<td>The definition of delays at a signalized junction</td>
<td>387</td>
</tr>
<tr>
<td>4.3.</td>
<td>Delay models for undersaturated conditions</td>
<td>388</td>
</tr>
<tr>
<td>4.4.</td>
<td>Time-dependent delay estimates</td>
<td>389</td>
</tr>
<tr>
<td>4.5.</td>
<td>Modeling of turns through oncoming traffic at signalized junctions</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>390</td>
</tr>
</tbody>
</table>

Chapter 23

Trip Timing

HANI S. MAHMASSANI

1. Introduction
2. Trip timing for the work commute under equilibrium conditions
3. Prediction of within-day equilibrium departure patterns
4. Day-to-day dynamics
 4.1. Daily variability of trip-timing decisions of commuters in actual systems
 4.2. Behavioral mechanisms and decision-process models
 4.3. Day-to-day forecasting frameworks
5. Concluding comments
References

Chapter 24

Modeling Parking

WILLIAM YOUNG

1. Introduction
2. Hierarchy of models
3. Model types
 3.1. Parking-design models
 3.2. Parking-allocation models
3.3. Parking-search models 416
3.4. Parking-choice models 417
3.5. Parking interaction models 419

4. Conclusions 419
References 420

Chapter 25
National Models
ANDREW DALY 421

1. Introduction 421
2. European national models 1975–1995 423
 2.1. The regional highways traffic model, England 423
 2.2. The Netherlands national model 424
 2.3. Norwegian national model 426
 2.4. Italian national model 427
 2.5. Danish and Swedish national models 428
 2.6. Other European national models 429
 2.7. Proposed model of Great Britain 429
3. Model design: Similarities and differences 430
4. Discussion and conclusions 431
References 432

Chapter 26
An Introduction to the Valuation of Travel-time Savings and Losses
HUGH F. GUNN 433

1. Introduction 433
2. Conceptual models of time–cost trading 434
 2.1. A simple behavioral model 434
 2.2. More elaborate models of rational behavior 435
3. Experimental data: Situations and evidence of preference 437
 3.1. Situations 438
 3.2. Indications of relative attractiveness 439
4. The history of VTTS measurement 439
 4.1. A pencil-and-paper approach 440
 4.2. Probabilistic choice models 442
 4.3. Regression approaches with transfer-price data 442
5. Current findings 443
 5.1. Personal travel 443
 5.2. Business travel and freight 444
6. Recent results and conclusions 445
References 447
Chapter 27
Can Telecommunications Help Solve Transportation Problems?
ILAN SALOMON

1. Introduction
 1.1. Background
 1.2. ICT applications
2. Do ICT affect the demand for travel? The main issues
 2.1. A typology of interactions
 2.2. Uncertainty about technology and behavior
 2.3. The time factor
 2.4. Do we need a new research paradigm?
3. Research approaches (and some pitfalls)
4. Conclusions and policy implications
References

Chapter 28
Automobile Demand and Type Choice
DAVID S. BUNCH

1. Introduction
2. Determinants of automobile demand
3. Auto-ownership models
4. Vehicle-purchase models
 4.1. Three MNL new car purchase models
 4.2. Nested MNLs of vehicle purchase
 4.3. Mixed MNL and revealed preference/stated preference joint estimation
5. Vehicle-holdings and usage models
 5.1. Discrete-continuous NMDLs
 5.2. Examples from the literature
6. Vehicle-transaction models
7. Conclusions
References

Chapter 29
Information Systems and Other Intelligent Transport System Innovations
PETER BONSALL

1. Introduction
 1.1. Dimensions of response
2. The impact of ITS on travellers' knowledge of the transport system
 2.1. Modelling the absence of information
Chapter 33
Urban Freight Movement Modeling
GLEN D'ESTE
1. Introduction 539
2. The nature of urban freight 540
 2.1. Partitioning the urban freight market 541
 2.2. Measuring urban freight movements 544
3. Modeling framework 545
4. Steps in the modeling process 546
 4.1. Partitioning 546
 4.2. Zoning system 546
 4.3. Networks 547
 4.4. Trip generation 547
 4.5. Trip distribution 548
 4.6. Mode split 549
 4.7. Trip assignment 549
5. Other modeling issues 550
 5.1. Data availability 550
 5.2. Temporal variation 550
 5.3. Transient attractors 551
 5.4. Pace of change 552
6. Concluding remarks 552
References 552

Chapter 34
Value of Freight Travel-time Savings
GERARD DE JONG 553
1. Introduction 553
2. Classification of methods used in freight VTTS research 554
3. Summary of outcomes for road transport 557
4. Summary of outcomes for rail or combined transport 558
5. Summary of outcomes for inland waterways transport 559
Contents

 6.1. Recruitment and segmentation 560
 6.2. Contents of the experiments 560
 6.3. Model 561
7. Value of freight travel-time savings in the long run 562
8. Conclusion 563
References 563

Chapter 35
Modelling Performance: Rail
CHRIS NASH 565
1. Introduction 565
2. Characteristics of railways 566
 2.1. Multiplicity of outputs 566
 2.2. Complexity of the production process 567
 2.3. Operating environment and government intervention 568
3. Partial productivity measures 569
4. Total factor productivity 570
5. Explaining the performance of individual railways 572
6. Conclusions 574
References 574

Chapter 36
The Performance of Bus-transit Operators
BRUNO DE BORGER and KRISTIAAN KERSTENS 577
1. Introduction 577
2. Performance measurement in bus transit 578
 2.1. Performance concepts: Productivity, efficiency, and effectiveness 578
 2.2. Specification of inputs and outputs for performance measurement in
 the bus industry 580
3. Performance of bus operators 583
 3.1. Bus technology and performance: Some facts 583
 3.2. Determinants of bus transit productivity and efficiency 586
4. Conclusion 593
References 594

Chapter 37
Models of Airport Performance
PETER FORSYTH 597
1. Introduction 597
2. Modeling demand, congestion cost, and pricing 597
 2.1. Congestion models 598