Abstract

The book is first of all a history of category theory from the beginnings to A.
Grothendieck and F.W. Lawvere. Category theory was an important concep-
tual tool in 20th century mathematics whose influence on some mathematical
subdisciplines (above all algebraic topology and algebraic geometry) is ana-
lyzed. Category theory also has an important philosophical aspect: on the
one hand its set-theoretical foundation is less obvious than for other ma-
thematical theories, and on the other hand it unifies conceptually a large
part of modern mathematics and may therefore be considered as somewhat
fundamental itself. The role of this philosophical aspect in the historical de-
velopment is the second focus of the book. Relying on the historical analysis,
the author develops a philosophical interpretation of the theory of his own,
intending to get closer to how mathematicians conceive the significance of
their activity than traditional schools of philosophy of science.

The book is the first monography exclusively devoted to the history of cate-
gory theory. To a substantial extent it considers aspects never studied before.
The author uses (and justifies the use of) a methodology combining histo-
rical and philosophical approaches. The analysis is not confined to general
remarks, but goes into considerable mathematical detail. Hence, the book
provides an exceptionally thorough case study compared with other works on
history or philosophy of mathematics. The philosophical position developed
here (inspired by Peircean pragmatism and Wittgenstein) is an interesting
alternative to traditional approaches in philosophy of mathematics like pla-
tonism, formalism and intuitionism.
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